
Inducing the Lyndon Array

Felipe A. Louza1 Sabrina Mantaci2 Giovanni Manzini3,4

Marinella Sciortino2 Guilherme P. Telles5

1Department of Computing and Mathematics, University of São Paulo, Brazil

2Dipartimento di Matematica e Informatica, Università di Palermo, Italy

3University of Eastern Piedmont, Alessandria, Italy

4IIT CNR, Pisa, Italy

5Institute of Computing, University of Campinas, Brazil

SPIRE 2019
Segovia, Spain - October 7th, 2019

Inducing the Lyndon Array SPIRE 2019 1

Our contribution

We propose an algorithm to compute simultaneously the Lyndon
Array LA and the Suffix Array SA of a text.

It is a variant of the algorithm by Nong et al., 2013 for suffix array
construction based on induced suffix sorting
Time complexity: O(n), where n is the length of the text
Working space: σ + O(1) words, where σ is the alphabet size

Our result improves the previous best space requirement for linear
time computation of the Lyndon array.

Experimental results with real and synthetic datasets show that our
algorithm is not only space-efficient but also fast in practice.

Inducing the Lyndon Array SPIRE 2019 2

Our contribution

We propose an algorithm to compute simultaneously the Lyndon
Array LA and the Suffix Array SA of a text.

It is a variant of the algorithm by Nong et al., 2013 for suffix array
construction based on induced suffix sorting

Time complexity: O(n), where n is the length of the text
Working space: σ + O(1) words, where σ is the alphabet size

Our result improves the previous best space requirement for linear
time computation of the Lyndon array.

Experimental results with real and synthetic datasets show that our
algorithm is not only space-efficient but also fast in practice.

Inducing the Lyndon Array SPIRE 2019 2

Our contribution

We propose an algorithm to compute simultaneously the Lyndon
Array LA and the Suffix Array SA of a text.

It is a variant of the algorithm by Nong et al., 2013 for suffix array
construction based on induced suffix sorting
Time complexity: O(n), where n is the length of the text
Working space: σ + O(1) words, where σ is the alphabet size

Our result improves the previous best space requirement for linear
time computation of the Lyndon array.

Experimental results with real and synthetic datasets show that our
algorithm is not only space-efficient but also fast in practice.

Inducing the Lyndon Array SPIRE 2019 2

Our contribution

We propose an algorithm to compute simultaneously the Lyndon
Array LA and the Suffix Array SA of a text.

It is a variant of the algorithm by Nong et al., 2013 for suffix array
construction based on induced suffix sorting
Time complexity: O(n), where n is the length of the text
Working space: σ + O(1) words, where σ is the alphabet size

Our result improves the previous best space requirement for linear
time computation of the Lyndon array.

Experimental results with real and synthetic datasets show that our
algorithm is not only space-efficient but also fast in practice.

Inducing the Lyndon Array SPIRE 2019 2

Main objects: Lyndon Word and Lyndon Array

T = T [1] . . .T [n] is a string of length n over a fixed ordered alphabet
Σ of size σ.

T [i , j] denotes the factor of T starting from the i-th symbol and
ending at the j-th symbol.

The i-th rotation of T begins with T [i + 1], corresponding to the
string T ′ = T [i + 1, n]T [1, i].

banbaa is the 1-st rotation of abanba

A string of length n has n possible rotations.

A string T is primitive if it has n distinct rotations

A primitive string T is called a Lyndon word if it is the lexicographical
least among its rotations.

aabanb is a Lyndon word

Inducing the Lyndon Array SPIRE 2019 3

Main objects: Lyndon Word and Lyndon Array

Definition

Given a string T = T [1] . . .T [n], the Lyndon array (LA) of T is an array
of integers in the range [1, n] that, at each position i = 1, . . . , n, stores the
length of the longest Lyndon factor of T starting at i :

LA[i] = max{` | T [i , i + `− 1] is a Lyndon word}.

Example

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

b a n a a n a n a a n a n a $T =

1 2 1 5 2 1 2 1 5 2 1 2 1 1 1LA =

b a n a a n a n a a n a n a $

n a n a n a n a n

n a n n n

n

Lyndon
factors

Inducing the Lyndon Array SPIRE 2019 4

Several aspects of Lyndon array

Lyndon array generalizes the Lyndon factorization of a text: a string
can be uniquely factorized in a non-increasing sequence of Lyndon
words (Chen-Fox-Lyndon, 1958).

Bannai et al. (2017) used Lyndon arrays to prove the very known
conjecture by Kolpakov and Kucherov (1999): the number of runs
(maximal periodicities) in a string of length n is smaller than n.

The computation of the Lyndon array of a text T is strictly related to
the construction of the Lyndon tree of the string $T 1 (Crochemore,
Russo, 2018)

Lyndon array can be used as preprocessing for efficient constructions
of suffix array of a text (Bayer, 2016).

Known efficient constructions for Lyndon array involve other
structures...

1the symbol $ is smaller than any symbol of the alphabet Σ

Inducing the Lyndon Array SPIRE 2019 5

Several aspects of Lyndon array

Lyndon array generalizes the Lyndon factorization of a text: a string
can be uniquely factorized in a non-increasing sequence of Lyndon
words (Chen-Fox-Lyndon, 1958).

Bannai et al. (2017) used Lyndon arrays to prove the very known
conjecture by Kolpakov and Kucherov (1999): the number of runs
(maximal periodicities) in a string of length n is smaller than n.

The computation of the Lyndon array of a text T is strictly related to
the construction of the Lyndon tree of the string $T 1 (Crochemore,
Russo, 2018)

Lyndon array can be used as preprocessing for efficient constructions
of suffix array of a text (Bayer, 2016).

Known efficient constructions for Lyndon array involve other
structures...

1the symbol $ is smaller than any symbol of the alphabet Σ

Inducing the Lyndon Array SPIRE 2019 5

Several aspects of Lyndon array

Lyndon array generalizes the Lyndon factorization of a text: a string
can be uniquely factorized in a non-increasing sequence of Lyndon
words (Chen-Fox-Lyndon, 1958).

Bannai et al. (2017) used Lyndon arrays to prove the very known
conjecture by Kolpakov and Kucherov (1999): the number of runs
(maximal periodicities) in a string of length n is smaller than n.

The computation of the Lyndon array of a text T is strictly related to
the construction of the Lyndon tree of the string $T 1 (Crochemore,
Russo, 2018)

Lyndon array can be used as preprocessing for efficient constructions
of suffix array of a text (Bayer, 2016).

Known efficient constructions for Lyndon array involve other
structures...

1the symbol $ is smaller than any symbol of the alphabet Σ
Inducing the Lyndon Array SPIRE 2019 5

Several aspects of Lyndon array

Lyndon array generalizes the Lyndon factorization of a text: a string
can be uniquely factorized in a non-increasing sequence of Lyndon
words (Chen-Fox-Lyndon, 1958).

Bannai et al. (2017) used Lyndon arrays to prove the very known
conjecture by Kolpakov and Kucherov (1999): the number of runs
(maximal periodicities) in a string of length n is smaller than n.

The computation of the Lyndon array of a text T is strictly related to
the construction of the Lyndon tree of the string $T 1 (Crochemore,
Russo, 2018)

Lyndon array can be used as preprocessing for efficient constructions
of suffix array of a text (Bayer, 2016).

Known efficient constructions for Lyndon array involve other
structures...

1the symbol $ is smaller than any symbol of the alphabet Σ
Inducing the Lyndon Array SPIRE 2019 5

Several aspects of Lyndon array

Lyndon array generalizes the Lyndon factorization of a text: a string
can be uniquely factorized in a non-increasing sequence of Lyndon
words (Chen-Fox-Lyndon, 1958).

Bannai et al. (2017) used Lyndon arrays to prove the very known
conjecture by Kolpakov and Kucherov (1999): the number of runs
(maximal periodicities) in a string of length n is smaller than n.

The computation of the Lyndon array of a text T is strictly related to
the construction of the Lyndon tree of the string $T 1 (Crochemore,
Russo, 2018)

Lyndon array can be used as preprocessing for efficient constructions
of suffix array of a text (Bayer, 2016).

Known efficient constructions for Lyndon array involve other
structures...

1the symbol $ is smaller than any symbol of the alphabet Σ
Inducing the Lyndon Array SPIRE 2019 5

Sorting suffixes of a string T

Ti denotes the suffix T [i , n] of T . We assume that T [n] = $.

Suffix Array SA: It is an array of integers in the range [1, n] that gives
the lexicographic order of all suffixes of T , that is
TSA[1] < TSA[2] < · · · < TSA[n].

The suffix array can be computed in O(n) time using σ + O(1) words
of working space (see for instance, Nong et al, 2013).

Example

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

b a n a a n a n a a n a n a $T =

15 14 9 4 12 7 2 10 5 1 13 8 3 11 6SA =

Inducing the Lyndon Array SPIRE 2019 6

Lyndon Array and Suffix array

If the SA of T is known, the Lyndon array LA can be computed in
linear time by using:

Lemma

The factor T [i , i + `− 1] is the longest Lyndon factor of T starting at i iff
Ti < Ti+k , for 1 ≤ k < `, and Ti > Ti+`. Therefore, LA[i] = `.

Previous Lemma is useful when Inverse Suffix Array ISA is used: it
stores the inverse permutation of SA, such that ISA[SA[i]] = i .

By using a result by Hohlweg and Reutenauer (2003) that combines
ISA and the notion Next Smallest Value NSV of an array, Lyndon
array can be computed in linear time (Franek et al. 2016).

Inducing the Lyndon Array SPIRE 2019 7

Lyndon Array and Suffix array

If the SA of T is known, the Lyndon array LA can be computed in
linear time by using:

Lemma

The factor T [i , i + `− 1] is the longest Lyndon factor of T starting at i iff
Ti < Ti+k , for 1 ≤ k < `, and Ti > Ti+`. Therefore, LA[i] = `.

Previous Lemma is useful when Inverse Suffix Array ISA is used: it
stores the inverse permutation of SA, such that ISA[SA[i]] = i .

By using a result by Hohlweg and Reutenauer (2003) that combines
ISA and the notion Next Smallest Value NSV of an array, Lyndon
array can be computed in linear time (Franek et al. 2016).

Inducing the Lyndon Array SPIRE 2019 7

Lyndon Array and Suffix array

If the SA of T is known, the Lyndon array LA can be computed in
linear time by using:

Lemma

The factor T [i , i + `− 1] is the longest Lyndon factor of T starting at i iff
Ti < Ti+k , for 1 ≤ k < `, and Ti > Ti+`. Therefore, LA[i] = `.

Previous Lemma is useful when Inverse Suffix Array ISA is used: it
stores the inverse permutation of SA, such that ISA[SA[i]] = i .

By using a result by Hohlweg and Reutenauer (2003) that combines
ISA and the notion Next Smallest Value NSV of an array, Lyndon
array can be computed in linear time (Franek et al. 2016).

Inducing the Lyndon Array SPIRE 2019 7

Efficient Constructions of LA up to now

Franek et al. 2016: Construct ISA and NSVISA in linear time by using
an auxiliary stack.
Space: n log σ bits for T + 2n words for LA and ISA, and the space
for the auxiliary stack. The stack size is n words in the worst case.

Crochemore, Russo 2018: LA can be computed in linear time from
the Cartesian tree built for ISA.

Franek et al, 2017: LA can be computed in linear time during the
Baier’s suffix array construction algorithm
Space: n log σ bits plus 2n words for LA and SA plus 2n words for
auxiliary integer arrays.

Louza et al., 2018: LA is computed in linear time during the
Burrows-Wheeler inversion, using n log σ bits for T plus 2n words for
LA and an auxiliary integer array, plus a stack with twice the size as
the one used to compute NSVISA.

Inducing the Lyndon Array SPIRE 2019 8

Efficient Constructions of LA up to now

Franek et al. 2016: Construct ISA and NSVISA in linear time by using
an auxiliary stack.
Space: n log σ bits for T + 2n words for LA and ISA, and the space
for the auxiliary stack. The stack size is n words in the worst case.

Crochemore, Russo 2018: LA can be computed in linear time from
the Cartesian tree built for ISA.

Franek et al, 2017: LA can be computed in linear time during the
Baier’s suffix array construction algorithm
Space: n log σ bits plus 2n words for LA and SA plus 2n words for
auxiliary integer arrays.

Louza et al., 2018: LA is computed in linear time during the
Burrows-Wheeler inversion, using n log σ bits for T plus 2n words for
LA and an auxiliary integer array, plus a stack with twice the size as
the one used to compute NSVISA.

Inducing the Lyndon Array SPIRE 2019 8

Efficient Constructions of LA up to now

Franek et al. 2016: Construct ISA and NSVISA in linear time by using
an auxiliary stack.
Space: n log σ bits for T + 2n words for LA and ISA, and the space
for the auxiliary stack. The stack size is n words in the worst case.

Crochemore, Russo 2018: LA can be computed in linear time from
the Cartesian tree built for ISA.

Franek et al, 2017: LA can be computed in linear time during the
Baier’s suffix array construction algorithm
Space: n log σ bits plus 2n words for LA and SA plus 2n words for
auxiliary integer arrays.

Louza et al., 2018: LA is computed in linear time during the
Burrows-Wheeler inversion, using n log σ bits for T plus 2n words for
LA and an auxiliary integer array, plus a stack with twice the size as
the one used to compute NSVISA.

Inducing the Lyndon Array SPIRE 2019 8

Efficient Constructions of LA up to now

Franek et al. 2016: Construct ISA and NSVISA in linear time by using
an auxiliary stack.
Space: n log σ bits for T + 2n words for LA and ISA, and the space
for the auxiliary stack. The stack size is n words in the worst case.

Crochemore, Russo 2018: LA can be computed in linear time from
the Cartesian tree built for ISA.

Franek et al, 2017: LA can be computed in linear time during the
Baier’s suffix array construction algorithm
Space: n log σ bits plus 2n words for LA and SA plus 2n words for
auxiliary integer arrays.

Louza et al., 2018: LA is computed in linear time during the
Burrows-Wheeler inversion, using n log σ bits for T plus 2n words for
LA and an auxiliary integer array, plus a stack with twice the size as
the one used to compute NSVISA.

Inducing the Lyndon Array SPIRE 2019 8

Our LA construction

It is based on Induced Suffix Sorting SACA-K proposed by Nong et
al. in 2013.

SACA-K constructs the suffix array in linear time and σ + O(1)
words of working space.

We propose a variant of SACA-K algorithm to compute in linear
time the Lyndon array as by-product. It uses σ + O(1) words of
working space.

Our strategy is optimal for strings from alphabet of constant size.

Inducing the Lyndon Array SPIRE 2019 9

LMS factors in SACA-K algorithm

Each suffix Ti of T [1, n] is classified according to its lexicographical
rank relative to Ti+1.

A suffix Ti is S-type if Ti < Ti+1, otherwise Ti is L-type.

A suffix Ti is LMS-type (leftmost S-type) if Ti is S-type and Ti−1 is
L-type.

The type of each suffix can be computed with a right-to-left scanning
of T

T [i] is LMS-type if and only if Ti is LMS-type.

A LMS-factor of T is a factor that begins with a LMS-type symbol
and ends with the following LMS-type symbol.

Inducing the Lyndon Array SPIRE 2019 10

LMS factors in SACA-K algorithm

Each suffix Ti of T [1, n] is classified according to its lexicographical
rank relative to Ti+1.

A suffix Ti is S-type if Ti < Ti+1, otherwise Ti is L-type.

A suffix Ti is LMS-type (leftmost S-type) if Ti is S-type and Ti−1 is
L-type.

The type of each suffix can be computed with a right-to-left scanning
of T

T [i] is LMS-type if and only if Ti is LMS-type.

A LMS-factor of T is a factor that begins with a LMS-type symbol
and ends with the following LMS-type symbol.

Inducing the Lyndon Array SPIRE 2019 10

SACA-K in 4 steps

1 Sort all LMS-type suffixes recursively into SA1, stored in SA[1, n/2].

2 Scan SA1 from right-to-left, and insert the LMS-suffixes into the tail
of their corresponding c-buckets (containing the suffixes starting with
c) in SA.

3 Induce L-type suffixes by scanning SA left-to-right: for each suffix
SA[i], if TSA[i]−1 is L-type, insert SA[i]− 1 into the head of its bucket.

4 Induce S-type suffixes by scanning SA right-to-left: for each suffix
SA[i], if TSA[i]−1 is S-type, insert SA[i]− 1 into the tail of its bucket.

Inducing the Lyndon Array SPIRE 2019 11

An example

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

b a n a a n a n a a n a n a $T =

L S L S S L S L S S L S L L Stype =

a n a a n a a n a $

a a n a a a n a $
LMS-factors =

15 9 4 12 7 2

15 9 4 12 7 2

15 14 1 13 8 3 11 6

15 14 9 4 12 7 2 10 5 1 13 8 3 11 6

Step 1

SA =

Step 2

SA =

Step 3

SA =

Step 4

SA =

(LMS-type)

(L-type)

(S-type)

recursive

Inducing the Lyndon Array SPIRE 2019 12

Key points in our strategy

We set all positions LA[i] = 0, for 1 ≤ i ≤ n.

In Step 4, when SA is scanned from right-to-left, each value SA[i],
corresponding to TSA[i], is read in its final (correct) position i (in
decreasing order) in SA.

By Lemma, LA[SA[i]] = ` iff TSA[i]+` is the next suffix (in text order)
that is smaller than TSA[i].

TSA[i]+` is the first suffix in TSA[i]+1,TSA[i]+2 . . . ,Tn that has not yet
been read in SA.

Therefore, during Step 4 we compute LA[SA[i]] by scanning
LA[SA[i] + 1, n] to the right up to the first position LA[SA[i] + `] = 0

We set LA[SA[i]] = `.

Inducing the Lyndon Array SPIRE 2019 13

Key points in our strategy

We set all positions LA[i] = 0, for 1 ≤ i ≤ n.

In Step 4, when SA is scanned from right-to-left, each value SA[i],
corresponding to TSA[i], is read in its final (correct) position i (in
decreasing order) in SA.

By Lemma, LA[SA[i]] = ` iff TSA[i]+` is the next suffix (in text order)
that is smaller than TSA[i].

TSA[i]+` is the first suffix in TSA[i]+1,TSA[i]+2 . . . ,Tn that has not yet
been read in SA.

Therefore, during Step 4 we compute LA[SA[i]] by scanning
LA[SA[i] + 1, n] to the right up to the first position LA[SA[i] + `] = 0

We set LA[SA[i]] = `.

Inducing the Lyndon Array SPIRE 2019 13

Key points in our strategy

We set all positions LA[i] = 0, for 1 ≤ i ≤ n.

In Step 4, when SA is scanned from right-to-left, each value SA[i],
corresponding to TSA[i], is read in its final (correct) position i (in
decreasing order) in SA.

By Lemma, LA[SA[i]] = ` iff TSA[i]+` is the next suffix (in text order)
that is smaller than TSA[i].

TSA[i]+` is the first suffix in TSA[i]+1,TSA[i]+2 . . . ,Tn that has not yet
been read in SA.

Therefore, during Step 4 we compute LA[SA[i]] by scanning
LA[SA[i] + 1, n] to the right up to the first position LA[SA[i] + `] = 0

We set LA[SA[i]] = `.

Inducing the Lyndon Array SPIRE 2019 13

Key points in our strategy

We set all positions LA[i] = 0, for 1 ≤ i ≤ n.

In Step 4, when SA is scanned from right-to-left, each value SA[i],
corresponding to TSA[i], is read in its final (correct) position i (in
decreasing order) in SA.

By Lemma, LA[SA[i]] = ` iff TSA[i]+` is the next suffix (in text order)
that is smaller than TSA[i].

TSA[i]+` is the first suffix in TSA[i]+1,TSA[i]+2 . . . ,Tn that has not yet
been read in SA.

Therefore, during Step 4 we compute LA[SA[i]] by scanning
LA[SA[i] + 1, n] to the right up to the first position LA[SA[i] + `] = 0

We set LA[SA[i]] = `.

Inducing the Lyndon Array SPIRE 2019 13

Key points in our strategy

We set all positions LA[i] = 0, for 1 ≤ i ≤ n.

In Step 4, when SA is scanned from right-to-left, each value SA[i],
corresponding to TSA[i], is read in its final (correct) position i (in
decreasing order) in SA.

By Lemma, LA[SA[i]] = ` iff TSA[i]+` is the next suffix (in text order)
that is smaller than TSA[i].

TSA[i]+` is the first suffix in TSA[i]+1,TSA[i]+2 . . . ,Tn that has not yet
been read in SA.

Therefore, during Step 4 we compute LA[SA[i]] by scanning
LA[SA[i] + 1, n] to the right up to the first position LA[SA[i] + `] = 0

We set LA[SA[i]] = `.

Inducing the Lyndon Array SPIRE 2019 13

Key points in our strategy

We set all positions LA[i] = 0, for 1 ≤ i ≤ n.

In Step 4, when SA is scanned from right-to-left, each value SA[i],
corresponding to TSA[i], is read in its final (correct) position i (in
decreasing order) in SA.

By Lemma, LA[SA[i]] = ` iff TSA[i]+` is the next suffix (in text order)
that is smaller than TSA[i].

TSA[i]+` is the first suffix in TSA[i]+1,TSA[i]+2 . . . ,Tn that has not yet
been read in SA.

Therefore, during Step 4 we compute LA[SA[i]] by scanning
LA[SA[i] + 1, n] to the right up to the first position LA[SA[i] + `] = 0

We set LA[SA[i]] = `.

Inducing the Lyndon Array SPIRE 2019 13

Running example

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

b a n a a n a n a a n a n a $T =

6SA =

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0LA =

5 1 13 8 3 11 6SA =

1 0 1 0 2 1 0 1 0 0 1 0 1 0 0LA =

10 5 1 13 8 3 11 6SA =

1 0 1 0 2 1 0 1 0 2 1 0 1 0 0LA =

9 4 12 7 2 10 5 1 13 8 3 11 6SA =

1 2 1 5 2 1 2 1 5 2 1 2 1 0 0LA =

iteration

15

9

8

3

Inducing the Lyndon Array SPIRE 2019 14

Running time and space

Proposition

The Lyndon array and the suffix array of a string T [1, n] over an alphabet
of size σ can be computed simultaneously in O(n · avelyn) time using
σ + O(1) words of working space, where avelyn is equal to the average
value in LA[1, n].

Question

Is it possible to reduce the running time to O(n)?

Result

Yes, each LA entry can be computed in constant time.

Inducing the Lyndon Array SPIRE 2019 15

Reducing running time to O(n)

We use two additional pointer arrays NEXT[1, n] and PREV[1, n]:

Definition

For i = 1, . . . , n − 1, NEXT[i] = min{`|i < ` ≤ n and LA[`] = 0}. In
addition, we define NEXT[n] = n + 1.

Definition

For i = 2, . . . , n, PREV[i] = `, such that NEXT[`] = i and LA[`] = 0. In
addition, we define PREV[1] = 0.

In other words, NEXT[i] points to the next smaller position ` in LA equal
to zero, and PREV[i] is the inverse pointer.

Inducing the Lyndon Array SPIRE 2019 16

Reducing running time to O(n)

We set NEXT[i] = i + 1 and PREV[i] = i − 1, for 1 ≤ i ≤ n.

At each iteration i = n, n− 1, . . . , 1, we compute LA[j] with j = SA[i]
by setting:

LA[j] = NEXT[j]− j (1)

We update the pointers arrays as follows:

NEXT[PREV[j]] = NEXT[j], if PREV[j] > 0 (2)

PREV[NEXT[j]] = PREV[j], if NEXT[j] < n + 1 (3)

Theorem

The Lyndon array and the suffix array of a string T [1, n] over an alphabet
of size σ can be computed simultaneously in O(n) time using
2n + σ + O(1) words of working space.

Inducing the Lyndon Array SPIRE 2019 17

Getting rid of a pointer

We store only one array, say A[1, n], keeping NEXT/PREV
information together.

The array NEXT is initially stored into the space of A[1, n], then we
reuse A[1, n] to store the (useful) entries of PREV.

Note that when we write LA[j] = `, the value in A[j], that is NEXT[j]
is no more used by the algorithm. Then, we can reuse A[j] to store
PREV[j + 1].

PREV can be computed in terms of A and LA:

PREV[j] =

{
j − 1 if LA[j − 1] = 0

A[j − 1] otherwise.
(4)

Inducing the Lyndon Array SPIRE 2019 18

Getting rid of both pointer arrays

The space of LA[1, n] is used to store both the auxiliary array A[1, n]
and the final values of LA.

Lemma

LA[j] = 1 iff Tj is an L-type suffix, or i = n.

Lemma

The LA-entries corresponding to S-type suffixes are always inserted on the
left of a block (possibly of size one) of non-zero entries in LA[1, n].

We can update PREV information only for right-most entry of each
block of non empty entries, which corresponds to a position of an
L-type suffix.

Inducing the Lyndon Array SPIRE 2019 19

Getting rid of both pointer arrays

The space of LA[1, n] is used to store both the auxiliary array A[1, n]
and the final values of LA.

Lemma

LA[j] = 1 iff Tj is an L-type suffix, or i = n.

Lemma

The LA-entries corresponding to S-type suffixes are always inserted on the
left of a block (possibly of size one) of non-zero entries in LA[1, n].

We can update PREV information only for right-most entry of each
block of non empty entries, which corresponds to a position of an
L-type suffix.

Inducing the Lyndon Array SPIRE 2019 19

Getting rid of both pointer arrays

The space of LA[1, n] is used to store both the auxiliary array A[1, n]
and the final values of LA.

Lemma

LA[j] = 1 iff Tj is an L-type suffix, or i = n.

Lemma

The LA-entries corresponding to S-type suffixes are always inserted on the
left of a block (possibly of size one) of non-zero entries in LA[1, n].

We can update PREV information only for right-most entry of each
block of non empty entries, which corresponds to a position of an
L-type suffix.

Inducing the Lyndon Array SPIRE 2019 19

Getting rid of both pointer arrays

The space of LA[1, n] is used to store both the auxiliary array A[1, n]
and the final values of LA.

Lemma

LA[j] = 1 iff Tj is an L-type suffix, or i = n.

Lemma

The LA-entries corresponding to S-type suffixes are always inserted on the
left of a block (possibly of size one) of non-zero entries in LA[1, n].

We can update PREV information only for right-most entry of each
block of non empty entries, which corresponds to a position of an
L-type suffix.

Inducing the Lyndon Array SPIRE 2019 19

Running example

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

b a n a a n a n a a n a n a $T =

6SA =

2 3 4 5 7 5 8 9 10 11 12 13 14 15 16A =

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0LA =

iteration

15

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

b a n a a n a n a a n a n a $T =

11 6SA =

2 3 4 5 7 5 8 9 10 12 10 13 14 15 16A =

0 0 0 0 0 1 0 0 0 0 1 0 0 0 0LA =

iteration

14

Inducing the Lyndon Array SPIRE 2019 20

Running example

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

b a n a a n a n a a n a n a $T =

3 11 6SA =

2 4 2 5 7 5 8 9 10 12 10 13 14 15 16A =

0 0 1 0 0 1 0 0 0 0 1 0 0 0 0LA =

iteration

13

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

b a n a a n a n a a n a n a $T =

8 3 11 6SA =

2 4 2 5 7 5 9 7 10 12 10 13 14 15 16A =

0 0 1 0 0 1 0 1 0 0 1 0 0 0 0LA =

iteration

12

Inducing the Lyndon Array SPIRE 2019 21

Running example

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

b a n a a n a n a a n a n a $T =

13 8 3 11 6SA =

2 4 2 5 7 5 9 7 10 12 10 14 12 15 16A =

0 0 1 0 0 1 0 1 0 0 1 0 1 0 0LA =

iteration

11

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

b a n a a n a n a a n a n a $T =

1 13 8 3 11 6SA =

0 4 2 5 7 5 9 7 10 12 10 14 12 15 16A =

1 0 1 0 0 1 0 1 0 0 1 0 1 0 0LA =

iteration

10

Inducing the Lyndon Array SPIRE 2019 22

Running example

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

b a n a a n a n a a n a n a $T =

2 10 5 1 13 8 3 11 6SA =

0 4 0 7 7 4 9 7 12 12 9 14 12 15 16A =

1 2 1 0 2 1 0 1 0 2 1 0 1 0 0LA =

iteration

7

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

b a n a a n a n a a n a n a $T =

7 2 10 5 1 13 8 3 11 6SA =

0 4 0 9 7 4 9 4 12 12 9 14 12 15 16A =

1 2 1 0 2 1 2 1 0 2 1 0 1 0 0LA =

iteration

6

Inducing the Lyndon Array SPIRE 2019 23

Running example

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

b a n a a n a n a a n a n a $T =

14 9 4 12 7 2 10 5 1 13 8 3 11 6SA =

0 4 0 9 7 4 9 0 14 12 9 14 0 0 16A =

1 2 1 5 2 1 2 1 5 2 1 2 1 1 0LA =

iteration

2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

b a n a a n a n a a n a n a $T =

15 14 9 4 12 7 2 10 5 1 13 8 3 11 6SA =

0 4 0 9 7 4 9 0 14 12 9 14 0 0 16A =

1 2 1 5 2 1 2 1 5 2 1 2 1 1 1LA =

iteration

1

Inducing the Lyndon Array SPIRE 2019 24

Getting rid of both pointer arrays

After the modified Step 4, we sequentially scan A[1, n] overwriting its
values with LA as follows:

LA[j] =

{
1 if A[j] < j

A[j]− j otherwise.
(5)

Theorem

The Lyndon array and the suffix array of a string of length n over an
alphabet of size σ can be computed simultaneously in O(n) time using
σ + O(1) words of working space.

Inducing the Lyndon Array SPIRE 2019 25

Experimental results

LA LA and SA SA

dataset σ n/220 N
S
V
-L
y
n
d
o
n

2

B
a
ie
r
-L

A
3

B
W

T
-L
y
n
d
o
n

4

B
a
ie
r
-L

A
+
S
A

2

S
A
C
A
-K

+
L
A

-1
7

n

S
A
C
A
-K

+
L
A

-1
3

n

S
A
C
A
-K

+
L
A

-9
n

S
A
C
A
-K

5

pitches 133 53 0.15 0.20 0.20 0.26 0.26 0.22 0.18 0.13

sources 230 201 0.26 0.28 0.32 0.37 0.46 0.41 0.34 0.24

xml 97 282 0.29 0.31 0.35 0.42 0.52 0.47 0.38 0.27

dna 16 385 0.39 0.28 0.49 0.43 0.69 0.60 0.52 0.36

english.1GB 239 1,047 0.46 0.39 0.56 0.57 0.84 0.74 0.60 0.42

proteins 27 1,129 0.44 0.40 0.53 0.66 0.89 0.69 0.58 0.40

einstein-de 117 88 0.34 0.28 0.38 0.39 0.57 0.54 0.44 0.31

kernel 160 246 0.29 0.29 0.39 0.38 0.53 0.47 0.38 0.26

fib41 2 256 0.34 0.07 0.45 0.18 0.66 0.57 0.46 0.32

cere 5 440 0.27 0.09 0.33 0.17 0.43 0.41 0.35 0.25

bbba 2 100 0.04 0.02 0.05 0.03 0.05 0.04 0.03 0.03

Table: Running time (µs/input byte).

2Franek et al. 2016
3Baier 2016, Franek et al. 2017
4Louza et al. 2018
5Nong et al. 2013

Inducing the Lyndon Array SPIRE 2019 26

Experimental Results

LA LA and SA SA

dataset σ n/220 N
S
V
-L
y
n
d
o
n

6

B
a
ie
r
-L

A
7

B
W

T
-L
y
n
d
o
n

8

B
a
ie
r
-L

A
+
S
A

7

S
A
C
A
-K

+
L
A

-1
7

n

S
A
C
A
-K

+
L
A

-1
3

n

S
A
C
A
-K

+
L
A

-9
n

S
A
C
A
-K

9

pitches 133 53 9 17 9 17 17 13 9 5

sources 230 201 9 17 9 17 17 13 9 5

xml 97 282 9 17 9 17 17 13 9 5

dna 16 385 9 17 9 17 17 13 9 5

english.1GB 239 1,047 9 17 9 17 17 13 9 5

proteins 27 1,129 9 17 9 17 17 13 9 5

einstein-de 117 88 9 17 9 17 17 13 9 5

kernel 160 246 9 17 9 17 17 13 9 5

fib41 2 256 9 17 9 17 17 13 9 5

cere 5 440 9 17 9 17 17 13 9 5

bbba 2 100 13 17 17 17 17 13 9 5

Table: Peak space (bytes/input size).

6Franek et al. 2016
7Baier 2016, Franek et al. 2017
8Louza et al. 2018
9Nong et al. 2013

Inducing the Lyndon Array SPIRE 2019 27

Conclusion

We have introduced an algorithm for computing simultaneously the
suffix array and Lyndon array (LA) of a text using induced suffix
sorting.

The most space-economical variant of our algorithm uses only
n + σ + O(1) words of working space making it the most space
economical LA algorithm among the ones running in linear time; this
includes both the algorithm computing the SA and LA and the ones
computing only the LA.

By experiments10, our algorithm is only slightly slower than the
available alternatives, and that computing the SA is usually the most
expensive step of all linear time LA construction algorithms

A natural open problem is to design a linear time algorithm to
construct only the LA using o(n) words of working space.

10The source-code is publicly available at
https://github.com/felipelouza/lyndon-array/

Inducing the Lyndon Array SPIRE 2019 28

https://github.com/felipelouza/lyndon-array/

Thanks for your attention!

Inducing the Lyndon Array SPIRE 2019 29

Next Smaller Value

Next Smaller Value of an array A NSVA: Given an array A of size n,
it is an array of size n such that NSVA[i] contains the smallest
position j > i such that A[j] < A[i], or n + 1 if such a position j does
not exist. Formally:

NSVA[i] = min
{
{n + 1} ∪ {i < j ≤ n | A[j] < A[i]}

}
.

Example

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

10 7 13 4 9 15 6 12 3 8 14 5 11 2 1A =

2 4 4 9 7 7 9 9 14 12 12 14 14 15 16NSV =

Inducing the Lyndon Array SPIRE 2019 30

Lyndon Array from SA (Hohlweg, Reutenauer 2003)

If the SA of T is known, the Lyndon array LA can be computed in
linear time by using:

Lemma

The factor T [i , i + `− 1] is the longest Lyndon factor of T starting at i iff
Ti < Ti+k , for 1 ≤ k < `, and Ti > Ti+`. Therefore, LA[i] = `.

Previous Lemma can be reformulated in terms of ISA or NSV:

Lemma

LA[i] = ` if and only if ISA[i] < ISA[i + k] for each 1 ≤ k < ` and
ISA[i] > ISA[i + `].

Lemma

LA[i] = ` if and only if i + ` = NSVISA[i]

Inducing the Lyndon Array SPIRE 2019 31

An example

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

b a n a a n a n a a n a n a $T =

15 14 9 4 12 7 2 10 5 1 13 8 3 11 6SA =

10 7 13 4 9 15 6 12 3 8 14 5 11 2 1ISA =

2 4 4 9 7 7 9 9 14 12 12 14 14 15 16NSVISA =

1 2 1 5 2 1 2 1 5 2 1 2 1 1 1LA =

b a n a a n a n a a n a n a $

n a n a n a n a n

n n n n

Lyndon
factors

Inducing the Lyndon Array SPIRE 2019 32

