Inducing the Lyndon Array

Felipe A. Louza¹ Sabrina Mantaci² Giovanni Manzini^{3,4} Marinella Sciortino² Guilherme P. Telles⁵

¹Department of Computing and Mathematics, University of São Paulo, Brazil

²Dipartimento di Matematica e Informatica, Università di Palermo, Italy

³University of Eastern Piedmont, Alessandria, Italy

⁴IIT CNR, Pisa, Italy

⁵Institute of Computing, University of Campinas, Brazil

SPIRE 2019 Segovia, Spain - October 7th, 2019

SPIRE 2019

• We propose an algorithm to compute simultaneously the Lyndon Array LA and the Suffix Array SA of a text.

- We propose an algorithm to compute simultaneously the Lyndon Array LA and the Suffix Array SA of a text.
 - It is a variant of the algorithm by Nong *et al.*, 2013 for suffix array construction based on *induced suffix sorting*

- We propose an algorithm to compute simultaneously the Lyndon Array LA and the Suffix Array SA of a text.
 - It is a variant of the algorithm by Nong *et al.*, 2013 for suffix array construction based on *induced suffix sorting*
 - Time complexity: O(n), where *n* is the length of the text
 - Working space: $\sigma + O(1)$ words, where σ is the alphabet size

- We propose an algorithm to compute simultaneously the Lyndon Array LA and the Suffix Array SA of a text.
 - It is a variant of the algorithm by Nong *et al.*, 2013 for suffix array construction based on *induced suffix sorting*
 - Time complexity: O(n), where *n* is the length of the text
 - Working space: $\sigma + O(1)$ words, where σ is the alphabet size
- Our result improves the previous best space requirement for linear time computation of the Lyndon array.
- Experimental results with real and synthetic datasets show that our algorithm is not only space-efficient but also fast in practice.

Main objects: Lyndon Word and Lyndon Array

- T = T[1]...T[n] is a string of length n over a fixed ordered alphabet
 Σ of size σ.
- T[i, j] denotes the factor of T starting from the *i*-th symbol and ending at the *j*-th symbol.
- The *i*-th rotation of T begins with T[i+1], corresponding to the string T' = T[i+1, n]T[1, i].
 - banbaa is the 1-st rotation of abanba
- A string of length *n* has *n* possible rotations.
- A string T is *primitive* if it has n distinct rotations
- A primitive string *T* is called a *Lyndon word* if it is the lexicographical least among its rotations.
 - aabanb is a Lyndon word

- ロ ト - (周 ト - (日 ト - (日 ト -)日

Main objects: Lyndon Word and Lyndon Array

Definition

Given a string $T = T[1] \dots T[n]$, the Lyndon array (LA) of T is an array of integers in the range [1, n] that, at each position $i = 1, \dots, n$, stores the length of the longest Lyndon factor of T starting at i:

 $LA[i] = \max\{\ell \mid T[i, i + \ell - 1] \text{ is a Lyndon word}\}.$

Example

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
T =	b	a	n	a	a	n	a	n	a	a	n	a	n	a	\$
LA =	1	2	1	5	2	1	2	1	5	2	1	2	1	1	1
	b	a	n	a	a	n	a	n	a	a	n	a	n	a	\$
Lyndon			n		a	n	a	n		a	n	a	n	_	_
factors						$\frac{n}{2}$	a	n			n		$\frac{n}{2}$		
								n							

• Lyndon array generalizes the Lyndon factorization of a text: a string can be uniquely factorized in a non-increasing sequence of Lyndon words (Chen-Fox-Lyndon, 1958).

	A D > A D > A A	é × K ≣ × L ≣ .	୬୯୯
Inducing the Lyndon Array	SPIRE 2019	5	

- Lyndon array generalizes the Lyndon factorization of a text: a string can be uniquely factorized in a non-increasing sequence of Lyndon words (Chen-Fox-Lyndon, 1958).
- Bannai *et al.* (2017) used Lyndon arrays to prove the very known conjecture by Kolpakov and Kucherov (1999): the number of runs (maximal periodicities) in a string of length *n* is smaller than *n*.

	< □ > < 圖 > < 重	► E >	≣ ୬୯୯
Inducing the Lyndon Array	SPIRE 2019	5	

- Lyndon array generalizes the Lyndon factorization of a text: a string can be uniquely factorized in a non-increasing sequence of Lyndon words (Chen-Fox-Lyndon, 1958).
- Bannai *et al.* (2017) used Lyndon arrays to prove the very known conjecture by Kolpakov and Kucherov (1999): the number of runs (maximal periodicities) in a string of length *n* is smaller than *n*.
- The computation of the Lyndon array of a text T is strictly related to the construction of the Lyndon tree of the string T^1 (Crochemore, Russo, 2018)

¹the symbol \$ is smaller than any symbol of the alphabet $\Sigma \leftarrow \Xi \rightarrow \leftarrow \Xi \rightarrow = - \circ \circ \circ \circ$

- Lyndon array generalizes the Lyndon factorization of a text: a string can be uniquely factorized in a non-increasing sequence of Lyndon words (Chen-Fox-Lyndon, 1958).
- Bannai *et al.* (2017) used Lyndon arrays to prove the very known conjecture by Kolpakov and Kucherov (1999): the number of runs (maximal periodicities) in a string of length *n* is smaller than *n*.
- The computation of the Lyndon array of a text T is strictly related to the construction of the Lyndon tree of the string T^1 (Crochemore, Russo, 2018)
- Lyndon array can be used as preprocessing for efficient constructions of suffix array of a text (Bayer, 2016).

¹the symbol \$ is smaller than any symbol of the alphabet $\Sigma \leftarrow \mathbb{P} \leftarrow \mathbb{P} \leftarrow \mathbb{P} \leftarrow \mathbb{P} \leftarrow \mathbb{P}$

- Lyndon array generalizes the Lyndon factorization of a text: a string can be uniquely factorized in a non-increasing sequence of Lyndon words (Chen-Fox-Lyndon, 1958).
- Bannai *et al.* (2017) used Lyndon arrays to prove the very known conjecture by Kolpakov and Kucherov (1999): the number of runs (maximal periodicities) in a string of length *n* is smaller than *n*.
- The computation of the Lyndon array of a text T is strictly related to the construction of the Lyndon tree of the string T^1 (Crochemore, Russo, 2018)
- Lyndon array can be used as preprocessing for efficient constructions of suffix array of a text (Bayer, 2016).
- Known efficient constructions for Lyndon array involve other structures...

Sorting suffixes of a string T

- T_i denotes the suffix T[i, n] of T. We assume that T[n] =\$.
- Suffix Array SA: It is an array of integers in the range [1, n] that gives the lexicographic order of all suffixes of T, that is T_{SA[1]} < T_{SA[2]} < ··· < T_{SA[n]}.
- The suffix array can be computed in O(n) time using σ + O(1) words of working space (see for instance, Nong et al, 2013).

Example

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
T =	b	a	n	a	a	n	a	n	a	a	n	a	n	a	\$
SA =	15	14	9	4	12	7	2	10	5	1	13	8	3	11	6

Lyndon Array and Suffix array

• If the SA of *T* is known, the Lyndon array LA can be computed in linear time by using:

Lemma

The factor $T[i, i + \ell - 1]$ is the longest Lyndon factor of T starting at i iff $T_i < T_{i+k}$, for $1 \le k < \ell$, and $T_i > T_{i+\ell}$. Therefore, $LA[i] = \ell$.

Lyndon Array and Suffix array

• If the SA of *T* is known, the Lyndon array LA can be computed in linear time by using:

Lemma

The factor $T[i, i + \ell - 1]$ is the longest Lyndon factor of T starting at i iff $T_i < T_{i+k}$, for $1 \le k < \ell$, and $T_i > T_{i+\ell}$. Therefore, $LA[i] = \ell$.

• Previous Lemma is useful when Inverse Suffix Array ISA is used: it stores the inverse permutation of SA, such that ISA[SA[*i*]] = *i*.

Lyndon Array and Suffix array

• If the SA of *T* is known, the Lyndon array LA can be computed in linear time by using:

Lemma

The factor $T[i, i + \ell - 1]$ is the longest Lyndon factor of T starting at i iff $T_i < T_{i+k}$, for $1 \le k < \ell$, and $T_i > T_{i+\ell}$. Therefore, $LA[i] = \ell$.

- Previous Lemma is useful when Inverse Suffix Array ISA is used: it stores the inverse permutation of SA, such that ISA[SA[*i*]] = *i*.
- By using a result by Hohlweg and Reutenauer (2003) that combines ISA and the notion Next Smallest Value NSV of an array, Lyndon array can be computed in linear time (Franek *et al.* 2016).

 Franek et al. 2016: Construct ISA and NSV_{ISA} in linear time by using an auxiliary stack.
 Space: n log σ bits for T + 2n words for LA and ISA, and the space for the auxiliary stack. The stack size is n words in the worst case.

- Franek et al. 2016: Construct ISA and NSV_{ISA} in linear time by using an auxiliary stack.
 Space: n log σ bits for T + 2n words for LA and ISA, and the space for the auxiliary stack. The stack size is n words in the worst case.
- Crochemore, Russo 2018: LA can be computed in linear time from the Cartesian tree built for ISA.

- Franek et al. 2016: Construct ISA and NSV_{ISA} in linear time by using an auxiliary stack.
 Space: n log σ bits for T + 2n words for LA and ISA, and the space for the auxiliary stack. The stack size is n words in the worst case.
- Crochemore, Russo 2018: LA can be computed in linear time from the Cartesian tree built for ISA.
- Franek et al, 2017: LA can be computed in linear time during the Baier's suffix array construction algorithm
 Space: n log σ bits plus 2n words for LA and SA plus 2n words for auxiliary integer arrays.

- Franek et al. 2016: Construct ISA and NSV_{ISA} in linear time by using an auxiliary stack.
 Space: n log σ bits for T + 2n words for LA and ISA, and the space for the auxiliary stack. The stack size is n words in the worst case.
- Crochemore, Russo 2018: LA can be computed in linear time from the Cartesian tree built for ISA.
- Franek et al, 2017: LA can be computed in linear time during the Baier's suffix array construction algorithm
 Space: n log σ bits plus 2n words for LA and SA plus 2n words for auxiliary integer arrays.
- Louza *et al.*, 2018: LA is computed in linear time during the Burrows-Wheeler inversion, using *n* log *σ* bits for *T* plus 2*n* words for LA and an auxiliary integer array, plus a stack with twice the size as the one used to compute NSV_{ISA}.

・ ロ ト ・ 同 ト ・ 三 ト ・ 三 ト

- It is based on Induced Suffix Sorting SACA-K proposed by Nong *et al.* in 2013.
- SACA-K constructs the suffix array in linear time and $\sigma + O(1)$ words of working space.
- We propose a variant of SACA-K algorithm to compute in linear time the Lyndon array as by-product. It uses $\sigma + O(1)$ words of working space.
- Our strategy is optimal for strings from alphabet of constant size.

LMS factors in $\operatorname{SACA-K}$ algorithm

- Each suffix T_i of T[1, n] is classified according to its lexicographical rank relative to T_{i+1} .
- A suffix T_i is S-type if $T_i < T_{i+1}$, otherwise T_i is L-type.
- A suffix T_i is LMS-type (leftmost S-type) if T_i is S-type and T_{i-1} is L-type.
- The type of each suffix can be computed with a right-to-left scanning of *T*

LMS factors in $\operatorname{SACA-K}$ algorithm

- Each suffix T_i of T[1, n] is classified according to its lexicographical rank relative to T_{i+1} .
- A suffix T_i is S-type if $T_i < T_{i+1}$, otherwise T_i is L-type.
- A suffix T_i is LMS-type (leftmost S-type) if T_i is S-type and T_{i-1} is L-type.
- The type of each suffix can be computed with a right-to-left scanning of T
- T[i] is LMS-type if and only if T_i is LMS-type.
- A LMS-factor of T is a factor that begins with a LMS-type symbol and ends with the following LMS-type symbol.

- **3** Sort all LMS-type suffixes recursively into SA₁, stored in SA[1, n/2].
- Scan SA₁ from right-to-left, and insert the LMS-suffixes into the tail of their corresponding *c*-buckets (containing the suffixes starting with *c*) in SA.
- Induce L-type suffixes by scanning SA left-to-right: for each suffix SA[i], if T_{SA[i]-1} is L-type, insert SA[i] 1 into the head of its bucket.
- Induce S-type suffixes by scanning SA right-to-left: for each suffix SA[i], if T_{SA[i]-1} is S-type, insert SA[i] 1 into the tail of its bucket.

An example

Inducing the Lyndon Array

SPIRE 2019

• We set all positions LA[i] = 0, for $1 \le i \le n$.

< □ > < □ > < □ > < □ > < □ > < □ >

- We set all positions LA[i] = 0, for $1 \le i \le n$.
- In Step 4, when SA is scanned from right-to-left, each value SA[i], corresponding to T_{SA[i]}, is read in its final (correct) position i (in decreasing order) in SA.

- We set all positions LA[i] = 0, for $1 \le i \le n$.
- In Step 4, when SA is scanned from right-to-left, each value SA[i], corresponding to T_{SA[i]}, is read in its final (correct) position i (in decreasing order) in SA.
- By Lemma, $LA[SA[i]] = \ell$ iff $T_{SA[i]+\ell}$ is the next suffix (in text order) that is smaller than $T_{SA[i]}$.

- We set all positions LA[i] = 0, for $1 \le i \le n$.
- In Step 4, when SA is scanned from right-to-left, each value SA[i], corresponding to T_{SA[i]}, is read in its final (correct) position i (in decreasing order) in SA.
- By Lemma, LA[SA[i]] = ℓ iff T_{SA[i]+ℓ} is the next suffix (in text order) that is smaller than T_{SA[i]}.
- *T*_{SA[*i*]+ℓ} is the first suffix in *T*_{SA[*i*]+1}, *T*_{SA[*i*]+2}..., *T_n* that has not yet been read in SA.

- ロ ト - (周 ト - (日 ト - (日 ト -)日

- We set all positions LA[i] = 0, for $1 \le i \le n$.
- In Step 4, when SA is scanned from right-to-left, each value SA[i], corresponding to T_{SA[i]}, is read in its final (correct) position i (in decreasing order) in SA.
- By Lemma, LA[SA[i]] = ℓ iff T_{SA[i]+ℓ} is the next suffix (in text order) that is smaller than T_{SA[i]}.
- *T*_{SA[*i*]+ℓ} is the first suffix in *T*_{SA[*i*]+1}, *T*_{SA[*i*]+2}..., *T_n* that has not yet been read in SA.
- Therefore, during Step 4 we compute LA[SA[*i*]] by scanning LA[SA[*i*] + 1, *n*] to the right up to the first position LA[SA[*i*] + ℓ] = 0

- We set all positions LA[i] = 0, for $1 \le i \le n$.
- In Step 4, when SA is scanned from right-to-left, each value SA[i], corresponding to T_{SA[i]}, is read in its final (correct) position i (in decreasing order) in SA.
- By Lemma, LA[SA[i]] = ℓ iff T_{SA[i]+ℓ} is the next suffix (in text order) that is smaller than T_{SA[i]}.
- *T*_{SA[*i*]+ℓ} is the first suffix in *T*_{SA[*i*]+1}, *T*_{SA[*i*]+2}..., *T_n* that has not yet been read in SA.
- Therefore, during Step 4 we compute LA[SA[*i*]] by scanning LA[SA[*i*] + 1, *n*] to the right up to the first position LA[SA[*i*] + ℓ] = 0
- We set $LA[SA[i]] = \ell$.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ◆ □ ● ○ ○ ○

14

▲ 同 ▶ ▲ 国 ▶ ▲ 国 ▶

Proposition

The Lyndon array and the suffix array of a string T[1, n] over an alphabet of size σ can be computed simultaneously in $O(n \cdot \text{avelyn})$ time using $\sigma + O(1)$ words of working space, where avelyn is equal to the average value in LA[1, n].

Question

Is it possible to reduce the running time to O(n)?

Result

Yes, each LA entry can be computed in constant time.

Inducing the Lyndon Array	SPIRE 2019	15

イロト 不得 トイラト イラト 一日

Reducing running time to O(n)

• We use two additional pointer arrays NEXT[1, n] and PREV[1, n]:

Definition

For i = 1, ..., n - 1, NEXT $[i] = \min\{\ell | i < \ell \le n \text{ and } LA[\ell] = 0\}$. In addition, we define NEXT[n] = n + 1.

Definition

For i = 2, ..., n, $PREV[i] = \ell$, such that $NEXT[\ell] = i$ and $LA[\ell] = 0$. In addition, we define PREV[1] = 0.

In other words, NEXT[i] points to the next smaller position ℓ in LA equal to zero, and PREV[i] is the inverse pointer.

Inducing the Lyndon Array	SPIRE 2019	16
---------------------------	------------	----

A ロ ト 4 回 ト 4 三 ト 4 三 ト 9 0 0 0

Reducing running time to O(n)

- We set NEXT[i] = i + 1 and PREV[i] = i 1, for $1 \le i \le n$.
- At each iteration i = n, n-1,..., 1, we compute LA[j] with j = SA[i] by setting:

$$\mathsf{LA}[j] = \mathsf{NEXT}[j] - j \tag{1}$$

• We update the pointers arrays as follows:

$$NEXT[PREV[j]] = NEXT[j], \quad \text{if } PREV[j] > 0 \tag{2}$$
$$PREV[NEXT[j]] = PREV[j], \quad \text{if } NEXT[j] < n + 1 \tag{3}$$

Theorem

The Lyndon array and the suffix array of a string T[1, n] over an alphabet of size σ can be computed simultaneously in O(n) time using $2n + \sigma + O(1)$ words of working space.

SPIRE 2019

・ ロ ト ・ 同 ト ・ 三 ト ・ 三 ト

Getting rid of a pointer

- We store only one array, say A[1, n], keeping NEXT/PREV information together.
- The array NEXT is initially stored into the space of A[1, n], then we reuse A[1, n] to store the (useful) entries of PREV.
- Note that when we write LA[j] = ℓ, the value in A[j], that is NEXT[j] is no more used by the algorithm. Then, we can reuse A[j] to store PREV[j + 1].
- PREV can be computed in terms of A and LA:

$$\mathsf{PREV}[j] = \begin{cases} j-1 & \text{if } \mathsf{LA}[j-1] = 0\\ \mathsf{A}[j-1] & \text{otherwise.} \end{cases}$$
(4)

< 口 > < 同 > < 回 > < 回 > < 回 > <

• The space of LA[1, n] is used to store both the auxiliary array A[1, n] and the final values of LA.

- 4 間 ト - 4 三 ト - 4 三 ト

• The space of LA[1, n] is used to store both the auxiliary array A[1, n] and the final values of LA.

Lemma

LA[j] = 1 iff T_i is an L-type suffix, or i = n.

• The space of LA[1, n] is used to store both the auxiliary array A[1, n] and the final values of LA.

Lemma

LA[j] = 1 iff T_i is an L-type suffix, or i = n.

Lemma

The LA-entries corresponding to S-type suffixes are always inserted on the left of a block (possibly of size one) of non-zero entries in LA[1, n].

• The space of LA[1, n] is used to store both the auxiliary array A[1, n] and the final values of LA.

Lemma

LA[j] = 1 iff T_j is an L-type suffix, or i = n.

Lemma

The LA-entries corresponding to S-type suffixes are always inserted on the left of a block (possibly of size one) of non-zero entries in LA[1, n].

• We can update PREV information only for right-most entry of each block of non empty entries, which corresponds to a position of an L-type suffix.

Inducing the Lyndon Array

SPIRE 2019

Inducing the Lyndon Array

SPIRE 2019

$$I = \begin{bmatrix} 0 & u & n & u & n & u & n & u & n & u & n & u & n & u & n & u & n & u & s \end{bmatrix}$$

$$SA = \begin{bmatrix} 15 & 14 & 9 & 4 & 12 & 7 & 2 & 10 & 5 & 1 & 13 & 8 & 3 & 11 & 6 \\ A = \begin{bmatrix} 0 & 4 & 0 & 9 & 7 & 4 & 9 & 0 & 14 & 12 & 9 & 14 & 0 & 0 & 16 \\ LA = \begin{bmatrix} 1 & 2 & 1 & 5 & 2 & 1 & 2 & 1 & 5 & 2 & 1 & 2 & 1 & 1 & 1 \\ \end{bmatrix}$$

Inducing the Lyndon Array

SPIRE 2019

After the modified Step 4, we sequentially scan A[1, n] overwriting its values with LA as follows:

$$-A[j] = \begin{cases} 1 & \text{if } A[j] < j \\ A[j] - j & \text{otherwise.} \end{cases}$$
(5)

Theorem

The Lyndon array and the suffix array of a string of length n over an alphabet of size σ can be computed simultaneously in O(n) time using $\sigma + O(1)$ words of working space.

Experimental results

			SV-LYNDON ²	ater-LA ³ F	WT-Lyndon ⁴	AIER-LA+SA ²	ACA-K+LA-17n F	ACA-K+LA-13n S	ACA-K+LA-9n	SA SA-K ⁵
dataset	σ	n/2 ²⁰	Z	В	В	В	õ	õ	õ	Š
pitches	133	53	0.15	0.20	0.20	0.26	0.26	0.22	0.18	0.13
sources	230	201	0.26	0.28	0.32	0.37	0.46	0.41	0.34	0.24
xml	97	282	0.29	0.31	0.35	0.42	0.52	0.47	0.38	0.27
dna	16	385	0.39	0.28	0.49	0.43	0.69	0.60	0.52	0.36
english.1GB	239	1,047	0.46	0.39	0.56	0.57	0.84	0.74	0.60	0.42
proteins	27	1,129	0.44	0.40	0.53	0.66	0.89	0.69	0.58	0.40
einstein-de	117	88	0.34	0.28	0.38	0.39	0.57	0.54	0.44	0.31
kernel	160	246	0.29	0.29	0.39	0.38	0.53	0.47	0.38	0.26
fib41	2	256	0.34	0.07	0.45	0.18	0.66	0.57	0.46	0.32
cere	5	440	0.27	0.09	0.33	0.17	0.43	0.41	0.35	0.25
bbba	2	100	0.04	0.02	0.05	0.03	0.05	0.04	0.03	0.03

Table: Running time (μ s/input byte).

² Franek <i>et al.</i> 2016			
³ Baier 2016, Franek <i>et al.</i> 2017			
⁴ Louza <i>et al.</i> 2018			
⁵ Nong <i>et al.</i> 2013	< □ > < 团 > < 国	★ ₹ ₹ < ₹	り 。
Inducing the Lyndon Array	SPIRE 2019	26	

Experimental Results

				LA			LA ar	nd SA		SA
dataset	σ	n/2 ²⁰	NSV-Lyndon ⁶	$BAIER-LA^7$	BWT-Lyndon ⁸	BAIER-LA+SA 7	SACA-K+LA-17n	SACA-K+LA-13n	SACA-K+LA-9n	SACA-K ⁹
pitches	133	53	9	17	9	17	17	13	9	5
sources	230	201	9	17	9	17	17	13	9	5
xml	97	282	9	17	9	17	17	13	9	5
dna	16	385	9	17	9	17	17	13	9	5
english.1GB	239	1,047	9	17	9	17	17	13	9	5
proteins	27	1,129	9	17	9	17	17	13	9	5
einstein-de	117	88	9	17	9	17	17	13	9	5
kernel	160	246	9	17	9	17	17	13	9	5
fib41	2	256	9	17	9	17	17	13	9	5
cere	5	440	9	17	9	17	17	13	9	5
bbba		100	13	17	17	17	17	13	9	5

Table: Peak space (bytes/input size).

⁶Franek *et al.*⁷Baier 2016, Franek *et al.*⁸Louza *et al.*⁹Nong *et al.*Inducing the Lyndon Array SPIRE 2019 27

Conclusion

- We have introduced an algorithm for computing simultaneously the suffix array and Lyndon array (LA) of a text using induced suffix sorting.
- The most space-economical variant of our algorithm uses only $n + \sigma + O(1)$ words of working space making it the most space economical LA algorithm among the ones running in linear time; this includes both the algorithm computing the SA and LA and the ones computing only the LA.
- By experiments¹⁰, our algorithm is only slightly slower than the available alternatives, and that computing the SA is usually the most expensive step of all linear time LA construction algorithms
- A natural open problem is to design a linear time algorithm to construct only the LA using o(n) words of working space.

https://github.com/felipelouza/lyndon-array/

¹⁰The source-code is publicly available at

Thanks for your attention!

l	nc	luci	ing	the	Lync	lon /	Array

Next Smaller Value

Next Smaller Value of an array A NSV_A: Given an array A of size n, it is an array of size n such that NSV_A[i] contains the smallest position j > i such that A[j] < A[i], or n + 1 if such a position j does not exist. Formally:

$$\mathsf{NSV}_{\mathsf{A}}[i] = \min\{\{n+1\} \cup \{i < j \le n \mid \mathsf{A}[j] < \mathsf{A}[i]\}\}.$$

Lyndon Array from SA (Hohlweg, Reutenauer 2003)

• If the SA of *T* is known, the Lyndon array LA can be computed in linear time by using:

Lemma

The factor $T[i, i + \ell - 1]$ is the longest Lyndon factor of T starting at i iff $T_i < T_{i+k}$, for $1 \le k < \ell$, and $T_i > T_{i+\ell}$. Therefore, $LA[i] = \ell$.

• Previous Lemma can be reformulated in terms of ISA or NSV:

Lemma

 $LA[i] = \ell$ if and only if ISA[i] < ISA[i + k] for each $1 \le k < \ell$ and $ISA[i] > ISA[i + \ell]$.

Lemma

$$\mathsf{LA}[i] = \ell$$
 if and only if $i + \ell = \mathsf{NSV}_{\mathsf{ISA}}[i]$

nc	1101	ng t	1000	on /	rrai
				_	

An example

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 のへの