

External Memory BWT and LCP
Computation for Sequence

Collections with Applications

Lavinia Egidi
University of Eastern Piedmont, Italy

Felipe A. Louza
University of São Paulo, Ribeirão Preto, Brazil

Giovanni Manzini
University of Eastern Piedmont, Italy
IIT, National Research Council, Pisa, Italy

Guilherme P. Telles
University of Campinas, Campinas, Brazil

WABI 2018, Helsinki

The problem

Given a collection of strings S1 , S2 , S3 ... Sk
compute the BWT and LCP array of the collection.

Mainly interested in the case of many (relatively)
short strings, but no limitations on the number of
strings and their lengths

Single string BWT/LCP

LCP BWT suffixes

 b $
0 c ab$
2 $ abcab$
0 a b$
1 a bcab$
0 b cab$

LCP BWT suffixes

 c #
0 # aabcabc
1 c abc#
3 a abcabc#
0 a bc#
2 a bcabc#
0 b c#
1 b cabc#

S1 = abcab$ S2 = aabcabc#

Multi-String BWT/LCP

LCP BWT suffixes

 b $
0 c #
0 # aabcabc
1 c ab$
2 c abc#
3 $ abcab$
5 a abcabc#
0 a b$
1 a bc#
2 a bcab$
4 a bcabc#
0 b c#
1 b cab$
3 b cabc#

S1 = abcab$

S2 = aabcabc#

The Terminator problem

We cannot use distinct terminators otherwise the
alphabet size would blow up. We use the same
symbol and keep track of its origin.
 Eg: $1 < $2 < $3 ⋯

State of the art

● gSACA+Φ optimal O(n) RAM algorithm: builds Suffix
Array, LCP array, uses only 10KB working space [Louza
et al 2017]

● BCR+LCP external memory algorithm from BEETL
library. Disk I/Os: O(n Maxlen/(B log n)) [Cox et al 2011-
2016].

Our contribution

External memory algorithm taking O(n
MaxLCP/(B log n)) I/Os

For DNA reads the actual running time is O(n
AveLCP/(B log n)). In our tests we are faster
than BCR+LCP for average length ≥ 300

Applications

● Multi-string BWT are used to build a compressed
Suffix Array supporting counting queries and more..

● LCP values are used to emulate a Suffix Tree and
solve a host of interesting problems:
✔ Mutation detection (previous talk)

✔ Maximal repeats

✔ Suffix-Prefix Overlaps

✔ Many others...

We propose external memory algorithms for
computing Maximal repeats, All pairs suffix-
prefix overlaps, and succinct De Bruijn graphs.

The challenge was to transform internal
memory Suffix Tree algorithms into external
memory algorithms working on BWT and LCP
arrays.

Algorithm outline

● Split the input into chunks that fit in RAM and
compute BWT of each chunk using Louza et al.
optimal algorithm

● Merge the BWTs in external memory and
compute the LCP values using a modified H&M
algorithm.

● Sort the LCP values in external memory using
standard multiway merge

Merging BWTs

BWT suffixes

 b $
 c ab$
 $ abcab$
 a b$
 a bcab$
 b cab$

BWT suffixes

 c #
 # aabcabc
 c abc#
 a abcabc#
 a bc#
 a bcabc#
 b c#
 b cabc#

S1 = abcab$ S2 = aabcabc#

 BWT suffixes

 b $
 c #
 # aabcabc
 c ab$
 c abc#
 $ abcab$
 a abcabc#
 a b$
 a bc#
 a bcab$
 a bcabc#
 b c#
 b cab$
 b cabc#

+ =

The algorithm

Holt and McMillan [Bioinformatics 2014]
proposed a simple and elegant algorithm to
merge BWTs in small space

The idea is to compute the bounded context
BWT for context size 0,1,2,…

Z BWT

0 b $
0 c ab$
0 $ abcab$
0 a b$
0 a bcab$
0 b cab$
1 c #
1 # aabcabc
1 c aabc#
1 a abcabc#
1 a bc#
1 a bcabc#
1 b c#
1 b cabc#

 b $
c ab$
$ abcab$
a b$
a bcab$
b cab$

c #
aabcabc
c abc#
a abcabc#
a bc#
a bcabc#
b c#
b cabc#

=+

Context size: 0

We represent the merged BWT
with the array Z

Z BWT

0 b $
1 c #
0 c ab$
0 $ abcab$
1 # aabcabc
1 c aabc#
1 a abcabc#
0 a b$
0 a bcab$
1 a bc#
1 a bcabc#
0 b cab$
1 b c#
1 b cabc#

 b $
c ab$
$ abcab$
a b$
a bcab$
b cab$

c #
aabcabc
c abc#
a abcabc#
a bc#
a bcabc#
b c#
b cabc#

=+

Context size: 1

We represent the merged BWT
with the array Z

Z BWT

0 b $
1 c #
1 # aabcabc
1 c aabc#
0 c ab$
0 $ abcab$
1 a abcabc#
0 a b$
0 a bcab$
1 a bc#
1 a bcabc#
1 b c#
0 b cab$
1 b cabc#

 b $
c ab$
$ abcab$
a b$
a bcab$
b cab$

c #
aabcabc
c abc#
a abcabc#
a bc#
a bcabc#
b c#
b cabc#

=+

Context size: 2

We represent the merged BWT
with the array Z

Z BWT

0 b $
1 c #
1 # aabcabc
1 c aabc#
0 c ab$
0 $ abcab$
1 a abcabc#
0 a b$
0 a bcab$
1 a bc#
1 a bcabc#
1 b c#
0 b cab$
1 b cabc#

 b $
c ab$
$ abcab$
a b$
a bcab$
b cab$

c #
aabcabc
c abc#
a abcabc#
a bc#
a bcabc#
b c#
b cabc#

=+

Context size: 2

The H&M algorithm only uses
BWT0 BWT1 and Z

 b
 a
 a
 b
 $
 a
 b
 c
 c
 #
 c
 c
 b

BWTc c

At iteration c a block is
a set of suffixes sharing
a length-c prefix

Each iteration reorders
suffixes within a block
and creates new blocks
splitting old ones

Computing LCP values

 b
 a
 a
 b
 $
 a
 b
 c
 c
 #
 c
 c
 b

BWTc c

We can prove that if we
split a block at iteration
c+1 the LCP value for
the position where the
splitting occurs is c.

Computing LCP values

● During the merging we “discover” larger and
larger LCP values

● Each time a LCP value is discovered we write
to file the pair <position, LCP>

● When the merging is done, we sort the pairs by
position and save the resulting LCP values

When to stop?

 b
 a
 a
 b
 $
 a
 b
 c
 c
 #
 c
 c
 b

BWTc c

At iteration c a block is
a set of suffixes sharing
a length-c prefix

Each iteration reorders
suffixes within a block
and creates new blocks
splitting old ones

Running time

● When all the blocks have size 1 the merging is
done and all LCP values have been computed

● The resulting algorithm takes O(n MaxLCP)
time and O(n MaxLCP/(B log n)) I/Os

● A simple heuristic (skipping ranges of size-1
blocks) makes the I/O complexity in practice
closer to O(n AveLCP/(B log n)) I/Os

Experimental results

● External memory algorithms should be tested
using RAM much smaller than input size

● The RAM should be limited at boot time,
otherwise the OS will use the extra RAM to
avoid disk transfers

● We have compared our algorithm (eGap) with
the state of the art for external memory
(BCR+LCP)

Collections

Running time in μsecs x symb

Observations

● eGap is faster for datasets with longer reads
● eGap running time appears to be related to

AveLCP rather than MaxLCP
● eGap is better at exploiting all the available

RAM
● More experiments required ...

Summing Up

● We propose an external memory algorithm which
is faster than the state of the art for long reads

● In addition to BWT and LCP our algorithm can
produce the Document Array and the useful xlcp
bit array (see paper)

● Using these additional arrays we can compute
maximal repeats, suffix-prefix overlaps and
compact DB-graphs efficiently in external memory

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44

