
Engineering augmented suffix sorting algorithms

Felipe A. Louza

Advisor: Guilherme P. Telles
Co-advisor: Simon Gog (KIT/Germany)

Institute of Computing (IC)
UNICAMP, Brazil

July 27, 2017

Outline

1. Introduction

2. Burrows-Wheeler transform and LCP array construction in constant space

3. Optimal suffix sorting and LCP array construction for constant alphabets

4. Inducing enhanced suffix arrays for string collections

5. Contributions

6. References

Felipe A. Louza Eng. augmented suffix sorting alg. 2 / 48

Introduction

Suffix sorting:

I Is the problem of lexicographically ordering all suffixes of a string T of length n.

I Is a fundamental problem in string processing related to:

I Suffix array (SA) construction [MM93, GBYS92].

I Burrows-Wheeler transform (BWT) [BW94].

1 2 3 4 5 6 7

b a n a n a $T =

all suffixes
banana$

anana$

nana$

ana$

na$

a$

$

sort−−→

sorted suffixes
$

a$

ana$

anana$

banana$

na$

nana$

suffix−−−→
array

i SA
1 7
2 6
3 4
4 2
5 1
6 5
7 3

BWT−−−→ annb$aa

We assume that T always ends with T [n] = $, called sentinel, which is not present elsewhere in T and precedes every symbol.

Felipe A. Louza Eng. augmented suffix sorting alg. 3 / 48

Introduction

Suffix sorting:

I Is the problem of lexicographically ordering all suffixes of a string T of length n.

I Is a fundamental problem in string processing related to:

I Suffix array (SA) construction [MM93, GBYS92].

I Burrows-Wheeler transform (BWT) [BW94].

1 2 3 4 5 6 7

b a n a n a $T =

all suffixes
banana$

anana$

nana$

ana$

na$

a$

$

sort−−→

sorted suffixes
$

a$

ana$

anana$

banana$

na$

nana$

suffix−−−→
array

i SA
1 7
2 6
3 4
4 2
5 1
6 5
7 3

BWT−−−→ annb$aa

We assume that T always ends with T [n] = $, called sentinel, which is not present elsewhere in T and precedes every symbol.

Felipe A. Louza Eng. augmented suffix sorting alg. 3 / 48

Introduction

LCP-array:

I SA and BWT are commonly accompanied by the longest common prefix (LCP) array.

I Together, they are the basis of important full-text indexes.

Traditional

Suffix
Tree

Enhanced
Suffix
Array

External

String
B-Tree

EM Suffix
Array

Suffix
Array

LCP
Array

BWT

LZ77
Factorization

Compressed

Compressed
Suffix Array

Compressed
Suffix Tree

LZ77
Index

Figure by D. Kempa.

Felipe A. Louza Eng. augmented suffix sorting alg. 4 / 48

Introduction

LCP-array:

I SA and BWT are commonly accompanied by the longest common prefix (LCP) array.

I Together, they are the basis of important full-text indexes.

Traditional

Suffix
Tree

Enhanced
Suffix
Array

External

String
B-Tree

EM Suffix
Array

Suffix
Array

LCP
Array

BWT

LZ77
Factorization

Compressed

Compressed
Suffix Array

Compressed
Suffix Tree

LZ77
Index

Figure by D. Kempa.

Felipe A. Louza Eng. augmented suffix sorting alg. 4 / 48

Introduction

Suffix array construction algorithms (SACAs):

I Several SACAs have been proposed in the past 20 years [PST07, DPT12].

I In 2013, Nong [Non13] presented SACA-K, the first optimal algorithm.

Remark:

I This problem may be considered essentialy solved [Kär16].

Recent advances:

I Alternatives for external memory and parallel architectures?.

I Compute the LCP array and other structures simultaneously during suffix sorting.

Augmented Suffix Sorting
Our contributions:

1. BWT in-place and LCP array construction.

2. SA and LCP array construction in optimal time/space.

3. Augmented suffix sorting for string collections.

?One key to this approaches is the use of fast sequential algorithms.

Felipe A. Louza Eng. augmented suffix sorting alg. 5 / 48

Introduction

Suffix array construction algorithms (SACAs):

I Several SACAs have been proposed in the past 20 years [PST07, DPT12].

I In 2013, Nong [Non13] presented SACA-K, the first optimal algorithm.

Remark:

I This problem may be considered essentialy solved [Kär16].

Recent advances:

I Alternatives for external memory and parallel architectures?.

I Compute the LCP array and other structures simultaneously during suffix sorting.

Augmented Suffix Sorting
Our contributions:

1. BWT in-place and LCP array construction.

2. SA and LCP array construction in optimal time/space.

3. Augmented suffix sorting for string collections.

?One key to this approaches is the use of fast sequential algorithms.

Felipe A. Louza Eng. augmented suffix sorting alg. 5 / 48

Introduction

Suffix array construction algorithms (SACAs):

I Several SACAs have been proposed in the past 20 years [PST07, DPT12].

I In 2013, Nong [Non13] presented SACA-K, the first optimal algorithm.

Remark:

I This problem may be considered essentialy solved [Kär16].

Recent advances:

I Alternatives for external memory and parallel architectures?.

I Compute the LCP array and other structures simultaneously during suffix sorting.

Augmented Suffix Sorting
Our contributions:

1. BWT in-place and LCP array construction.

2. SA and LCP array construction in optimal time/space.

3. Augmented suffix sorting for string collections.

?One key to this approaches is the use of fast sequential algorithms.

Felipe A. Louza Eng. augmented suffix sorting alg. 5 / 48

Introduction

Suffix array construction algorithms (SACAs):

I Several SACAs have been proposed in the past 20 years [PST07, DPT12].

I In 2013, Nong [Non13] presented SACA-K, the first optimal algorithm.

Remark:

I This problem may be considered essentialy solved [Kär16].

Recent advances:

I Alternatives for external memory and parallel architectures?.

I Compute the LCP array and other structures simultaneously during suffix sorting.

Augmented Suffix Sorting
Our contributions:

1. BWT in-place and LCP array construction.

2. SA and LCP array construction in optimal time/space.

3. Augmented suffix sorting for string collections.

?One key to this approaches is the use of fast sequential algorithms.

Felipe A. Louza Eng. augmented suffix sorting alg. 5 / 48

Introduction

Suffix array construction algorithms (SACAs):

I Several SACAs have been proposed in the past 20 years [PST07, DPT12].

I In 2013, Nong [Non13] presented SACA-K, the first optimal algorithm.

Remark:

I This problem may be considered essentialy solved [Kär16].

Recent advances:

I Alternatives for external memory and parallel architectures?.

I Compute the LCP array and other structures simultaneously during suffix sorting.

Augmented Suffix Sorting
Our contributions:

1. BWT in-place and LCP array construction.

2. SA and LCP array construction in optimal time/space.

3. Augmented suffix sorting for string collections.

?One key to this approaches is the use of fast sequential algorithms.

Felipe A. Louza Eng. augmented suffix sorting alg. 5 / 48

Introduction

Suffix array construction algorithms (SACAs):

I Several SACAs have been proposed in the past 20 years [PST07, DPT12].

I In 2013, Nong [Non13] presented SACA-K, the first optimal algorithm.

Remark:

I This problem may be considered essentialy solved [Kär16].

Recent advances:

I Alternatives for external memory and parallel architectures?.

I Compute the LCP array and other structures simultaneously during suffix sorting.

Augmented Suffix Sorting
Our contributions:

1. BWT in-place and LCP array construction.

2. SA and LCP array construction in optimal time/space.

3. Augmented suffix sorting for string collections.

?One key to this approaches is the use of fast sequential algorithms.

Felipe A. Louza Eng. augmented suffix sorting alg. 5 / 48

Notations

Strings:

I Let T be a string of length n, T = T [1, n], over a ordered alphabet of size σ.

Alphabet:

I constant: has size σ = O(1).

I integer: has size σ = nO(1).

I unbounded: otherwise.
1 2 3 4 5 6 7

b a n a n a $T =

I T [i] is the i-th symbol of T .

I T [i , j] is the substring including symbols from T [i] to T [j], i ≤ j .

I T [1, i] is a prefix and a T [i , n] is a suffix of T .

Space:
I A string T [1, n] is stored in n log σ bits.

I 1 byte: ASCII.

I A permutation of integers in [1, n] is stored using n log n bits.
I 4 bytes if n < 231, 8 bytes otherwise.

Workspace:

I Is the extra space needed in addition to the space used by the input and output.

Felipe A. Louza Eng. augmented suffix sorting alg. 6 / 48

Notations

Strings:

I Let T be a string of length n, T = T [1, n], over a ordered alphabet of size σ.

Alphabet:

I constant: has size σ = O(1).

I integer: has size σ = nO(1).

I unbounded: otherwise.
1 2 3 4 5 6 7

b a n a n a $T =

I T [i] is the i-th symbol of T .

I T [i , j] is the substring including symbols from T [i] to T [j], i ≤ j .

I T [1, i] is a prefix and a T [i , n] is a suffix of T .

Space:
I A string T [1, n] is stored in n log σ bits.

I 1 byte: ASCII.

I A permutation of integers in [1, n] is stored using n log n bits.
I 4 bytes if n < 231, 8 bytes otherwise.

Workspace:

I Is the extra space needed in addition to the space used by the input and output.

Felipe A. Louza Eng. augmented suffix sorting alg. 6 / 48

Notations

Strings:

I Let T be a string of length n, T = T [1, n], over a ordered alphabet of size σ.

Alphabet:

I constant: has size σ = O(1).

I integer: has size σ = nO(1).

I unbounded: otherwise.
1 2 3 4 5 6 7

b a n a n a $T =

I T [i] is the i-th symbol of T .

I T [i , j] is the substring including symbols from T [i] to T [j], i ≤ j .

I T [1, i] is a prefix and a T [i , n] is a suffix of T .

Space:
I A string T [1, n] is stored in n log σ bits.

I 1 byte: ASCII.

I A permutation of integers in [1, n] is stored using n log n bits.
I 4 bytes if n < 231, 8 bytes otherwise.

Workspace:

I Is the extra space needed in addition to the space used by the input and output.

Felipe A. Louza Eng. augmented suffix sorting alg. 6 / 48

Notations

Strings:

I Let T be a string of length n, T = T [1, n], over a ordered alphabet of size σ.

Alphabet:

I constant: has size σ = O(1).

I integer: has size σ = nO(1).

I unbounded: otherwise.
1 2 3 4 5 6 7

b a n a n a $T =

I T [i] is the i-th symbol of T .

I T [i , j] is the substring including symbols from T [i] to T [j], i ≤ j .

I T [1, i] is a prefix and a T [i , n] is a suffix of T .

Space:
I A string T [1, n] is stored in n log σ bits.

I 1 byte: ASCII.

I A permutation of integers in [1, n] is stored using n log n bits.
I 4 bytes if n < 231, 8 bytes otherwise.

Workspace:

I Is the extra space needed in addition to the space used by the input and output.

Felipe A. Louza Eng. augmented suffix sorting alg. 6 / 48

Notations

SA and LCP array:

I SA: is an array of integers in the range [1, n] that gives the lexicographic order of all suffixes.

I LCP array: stores the length of the longest common prefix (lcp) of two consecutive suffixes.

I The arrays can be partitioned into σ buckets, one for each symbol in the alphabet.

1 2 3 4 5 6 7

b a n a n a $T =

sorted suffixes
i SA LCP T [SA[i], n]
1 7 0 $

2 6 0 a$

3 4 1 ana$

4 2 3 anana$

5 1 0 banana$

6 5 0 na$

7 3 2 nana$

I The range minimum query (rmq) w.r.t LCP:

I rmq(i, j) = mini<k≤j{LCP[k]}.
I Given T and its LCP array we have:

lcp(T [SA[i], n],T [SA[j], n]) = rmq(i, j)

Felipe A. Louza Eng. augmented suffix sorting alg. 7 / 48

Notations

BWT:

I A reversible transformation that produces a permutation of T which tends to group the
occurrences of a symbol in runs [BW94].

I The BWT can be obtained sorting all the n circular shifts of T , and taking the last column.

I Can be defined in terms of SA:

BWT[i] =

{
T [SA[i]− 1] if SA[i]− 1 > 0
$ otherwise.

F L
banana$ $banana
$banana a$banan

circular−−−−→
shifts

a$banan
sort−−→

ana$ban
last−−→

column
banana$ na$bana anana$b annb$aa

ana$ban banana$
nana$ba na$bana
anana$b nana$ba

i SA L F
1 7 a $
2 6 n a$
3 4 n ana$
4 2 b anana$
5 1 $ banana$
6 5 a na$
7 3 a nana$

I LF-mapping:

I The i-th symbol α in column L corresponds to the i-th symbol α in column F.

Felipe A. Louza Eng. augmented suffix sorting alg. 8 / 48

Notations

BWT:

I A reversible transformation that produces a permutation of T which tends to group the
occurrences of a symbol in runs [BW94].

I The BWT can be obtained sorting all the n circular shifts of T , and taking the last column.

I Can be defined in terms of SA:

BWT[i] =

{
T [SA[i]− 1] if SA[i]− 1 > 0
$ otherwise.

F L
banana$ $banana
$banana a$banan

circular−−−−→
shifts

a$banan
sort−−→

ana$ban
last−−→

column
banana$ na$bana anana$b annb$aa

ana$ban banana$
nana$ba na$bana
anana$b nana$ba

i SA L F
1 7 a $
2 6 n a$
3 4 n ana$
4 2 b anana$
5 1 $ banana$
6 5 a na$
7 3 a nana$

I LF-mapping:

I The i-th symbol α in column L corresponds to the i-th symbol α in column F.

Felipe A. Louza Eng. augmented suffix sorting alg. 8 / 48

Notations

BWT:

I A reversible transformation that produces a permutation of T which tends to group the
occurrences of a symbol in runs [BW94].

I The BWT can be obtained sorting all the n circular shifts of T , and taking the last column.

I Can be defined in terms of SA:

BWT[i] =

{
T [SA[i]− 1] if SA[i]− 1 > 0
$ otherwise.

F L
banana$ $banana
$banana a$banan

circular−−−−→
shifts

a$banan
sort−−→

ana$ban
last−−→

column
banana$ na$bana anana$b annb$aa

ana$ban banana$
nana$ba na$bana
anana$b nana$ba

i SA L F
1 7 a $
2 6 n a$
3 4 n ana$
4 2 b anana$
5 1 $ banana$
6 5 a na$
7 3 a nana$

I LF-mapping:

I The i-th symbol α in column L corresponds to the i-th symbol α in column F.

Felipe A. Louza Eng. augmented suffix sorting alg. 8 / 48

Outline

1. Introduction

2. Burrows-Wheeler transform and LCP array construction in constant space

3. Optimal suffix sorting and LCP array construction for constant alphabets

4. Inducing enhanced suffix arrays for string collections

5. Contributions

6. References

Felipe A. Louza Eng. augmented suffix sorting alg. 9 / 48

BWT and LCP construction in constant space

BWT:

I Standard construction using SA in O(n) time.

I Workspace: O(n log n) bits ⇒ to store SA[1, n].

I Direct BWT construction (without SA):

I The most space-efficient is the O(n2) time BWT in-place due to Crochemore et al. [CGKL15].

BWT in-place and LCP array:

I Our contribution:

I We extend the BWT in-place [CGKL15] to also compute the LCP array in O(n2) time using O(1)
workspace.

Felipe A. Louza Eng. augmented suffix sorting alg. 10 / 48

BWT and LCP construction in constant space

BWT:

I Standard construction using SA in O(n) time.

I Workspace: O(n log n) bits ⇒ to store SA[1, n].

I Direct BWT construction (without SA):

I The most space-efficient is the O(n2) time BWT in-place due to Crochemore et al. [CGKL15].

BWT in-place and LCP array:

I Our contribution:

I We extend the BWT in-place [CGKL15] to also compute the LCP array in O(n2) time using O(1)
workspace.

Felipe A. Louza Eng. augmented suffix sorting alg. 10 / 48

Related Work

BWT in-place [CGKL15]:

I Overwrites the input string T with the BWT, n, n − 1, . . . , 1:

I At each step i we have BWT of suffix T [s, n], called BWT(Ts), with s = n − i + 1

I The position of $ in step i − 1 allows the construction of BWT(Ts).

1 2 3 4 5 6 7

b a n a n a $T =

Step

b a n a n a $

b a n a a n $

b a n a n $ a

b a a n n a $

b a n n $ a a

a n n b $ a aBWT =

1

2

3

4

5

6

7

Felipe A. Louza Eng. augmented suffix sorting alg. 11 / 48

Related Work

BWT in-place [CGKL15]:

I Incremental step:

I Given BWT(Ts+1), stored in T [s + 1, n]:

1. Replace $ by T [s].

2. Find the local rank r of T [s, n].

3. Insert new suffix and preceding character $ into T [r].

s BWT suffixes
1 b banana$

s → 2 a anana$
3 a $

4 n a$

5 n ana$

6 a na$

p → 7 $ nana$

BWT(Ts+1)

s BWT suffixes
1 b banana$

s → 2 a anana$
3 a $

4 n a$

5 n ana$

6 a na$

p → 7 a nana$

Replace $

s BWT suffixes
1 b banana$
2 a $

3 n a$

4 n ana$

r → 5 a...

6 a na$

p → 7 a nana$

Find local rank r

s BWT suffixes
1 b banana$

2 a $

3 n a$

4 n ana$

r → 5 $ anana$

6 a na$

7 a nana$

BWT(Ts)

I Step 2 (LF-mapping):

I T [p] ⇒ k-th α in BWT(Ts) corresponds to k-th α in F .
I To find r we count: number of α < T [s] in T [s + 1, n] and α = T [s] in T [s + 1, r].

Felipe A. Louza Eng. augmented suffix sorting alg. 12 / 48

Related Work

BWT in-place [CGKL15]:

I Analysis (for unbounded alphabets):

I O(n2) time: each step i needs O(n − i) time for:

I Counting, inserting and moving symbols in T [s, n].

I O(1) workspace:

I Extra space needed for constant number of variables.

Felipe A. Louza Eng. augmented suffix sorting alg. 13 / 48

Our contribution

BWT in-place and LCP array:

I Overwrites T with the BWT and computes the LCP array:

I At each step i we have BWT(Ts) and LCP(Ts) for the suffixes {T [s, n], . . . ,T [n, n]}, with
s = n − i + 1

1 2 3 4 5 6 7

b a n a n a $

0

T =

Step

b a n a n a $

0 0

b a n a a n $

0 0 0

b a n a n $ a

0 0 1 0

b a a n n a $

0 0 1 0 2

b a n n $ a a

0 0 1 3 0 2

a n n b $ a a

0 0 1 3 0 0 2

BWT =

LCP =

1

2

3

4

5

6

7

1 2 3 4 5 6 7 Step

Felipe A. Louza Eng. augmented suffix sorting alg. 14 / 48

Our contribution

BWT in-place and LCP array:

I Incremental step:

I Given BWT(Ts+1) and LCP(Ts+1), stored in T [s + 1, n] and LCP[s + 1, n]:

I Adding T [s, n] to the solution requires evaluating two values of lcp, adjacent to T [s, n].

1. LCP[r]: lcp(T [a, n],T [s, n])→ T [a, n] the largest suffix smaller than T [s, n].

2. LCP[r + 1]: lcp(T [s, n],T [b, n])→ T [b, n] the smallest suffix larger than T [s, n].

I We will show how to compute LCP[r] = `a = lcp(T [a, n],T [s, n])?:

s LCP BWT suffixes
1 - b banana$

2 0 a $

3 0 n a$

4 1 n ana$

r → 5 anana$

6 0 a na$

7 2 a nana$

s LCP BWT suffixes
1 - b banana$

2 0 a $

3 0 n a$

4 1 n ana$ T [a, n]
r → 5 `a = ? $ anana$ T [s, n]

r + 1→ 6 `b = ? a na$ T [b, n]
7 2 a nana$

? lcp(T [s, n],T [b, n]) may be computed in a similar fashion.

Felipe A. Louza Eng. augmented suffix sorting alg. 15 / 48

Our contribution

BWT in-place and LCP array:

I Computing LCP[r] = `a = lcp(T [a, n],T [s, n]):

I BWT(Ts+1) and LCP(Ts+1) are sufficient to compute these values.

1. `a = lcp(T [a, n],T [s, n]) = lcp(T [a + 1, n],T [s + 1, n]) + 1 if T [s] is equal to the first symbol of T [a, n],
otherwise LCP[r] = 0.

2. We know the position of T [s + 1, n] is p from previous step.

3. We must find the position pa+1 of T [a + 1, n] in BWT(Ts+1).

`a =

{
rmq(pa+1, p) + 1 if T [pa+1] = BWT[s]
0 otherwise.

4 1 n ana$ T [a, n]
r → 5 `a = ? $ anana$ T [s, n]

pa+1 → 6 0 a na$ T [a + 1, n]
p → 7 2 a nana$ Ts+1

Felipe A. Louza Eng. augmented suffix sorting alg. 16 / 48

Our contribution

BWT in-place and LCP array:

I Computing `a:
I To find position pa+1 in BWT(Ts+1):

1. T [a, n] has rank r , after the Shift it goes to r − 1.

2. The symbol in BWT[pa+1]=T[a] (the first symbol of T [a, n]), that has rank r in BWT(Ts+1).

Question: Where is the symbol with rank r in BWT(Ts+1) ??

3. Property:

If BWT[pa+1] = T [s]⇒ pa+1 ∈ [s + 1, p)? and pa+1 is the largest value in [s + 1, p).

Otherwise, if pa+1 ∈ [p, n]⇒ BWT[pa+1] < T [s]⇒ `a = 0.

s LCP BWT suffixes
1 - b banana$

s → 2 - a anana$
3 0 a $

4 0 n a$

r → 5 1 n ana$ T [a, n]

pa+1 → 6 0 a na$ T [a + 1, n]
p → 7 2 $ nana$ T [s + 1, n]

BWT(Ts+1) and LCP(Ts+1)

?Any other symbol equal to T [s] in [p,n] would have a rank ≥ r + 1.

Felipe A. Louza Eng. augmented suffix sorting alg. 17 / 48

Our contribution

BWT in-place and LCP array:

I Computing `a:
I To find position pa+1 in BWT(Ts+1):

1. T [a, n] has rank r , after the Shift it goes to r − 1.

2. The symbol in BWT[pa+1]=T[a] (the first symbol of T [a, n]), that has rank r in BWT(Ts+1).

Question: Where is the symbol with rank r in BWT(Ts+1) ??

3. Property:

If BWT[pa+1] = T [s]⇒ pa+1 ∈ [s + 1, p)? and pa+1 is the largest value in [s + 1, p).

Otherwise, if pa+1 ∈ [p, n]⇒ BWT[pa+1] < T [s]⇒ `a = 0.

s LCP BWT suffixes
1 - b banana$

s → 2 - a anana$
3 0 a $

4 0 n a$

r → 5 1 n ana$ T [a, n]

pa+1 → 6 0 a na$ T [a + 1, n]
p → 7 2 $ nana$ T [s + 1, n]

BWT(Ts+1) and LCP(Ts+1)

?Any other symbol equal to T [s] in [p,n] would have a rank ≥ r + 1.

Felipe A. Louza Eng. augmented suffix sorting alg. 17 / 48

Our contribution

BWT in-place and LCP array:

I Computing `a:
I To find position pa+1 in BWT(Ts+1):

1. T [a, n] has rank r , after the Shift it goes to r − 1.

2. The symbol in BWT[pa+1]=T[a] (the first symbol of T [a, n]), that has rank r in BWT(Ts+1).

Question: Where is the symbol with rank r in BWT(Ts+1) ??

3. Property:

If BWT[pa+1] = T [s]⇒ pa+1 ∈ [s + 1, p)? and pa+1 is the largest value in [s + 1, p).

Otherwise, if pa+1 ∈ [p, n]⇒ BWT[pa+1] < T [s]⇒ `a = 0.

s LCP BWT suffixes
1 - b banana$

s → 2 - a anana$
3 0 a $

4 0 n a$

r → 5 1 n ana$ T [a, n]

pa+1 → 6 0 a na$ T [a + 1, n]
p → 7 2 $ nana$ T [s + 1, n]

BWT(Ts+1) and LCP(Ts+1)

?Any other symbol equal to T [s] in [p,n] would have a rank ≥ r + 1.

Felipe A. Louza Eng. augmented suffix sorting alg. 17 / 48

Our contribution

BWT in-place and LCP array:

I Computing `a:

I Add: scan backwards BWT(Ts+1) from T [p − 1] to T [s + 1] until we find the first occurrence of
BWT[pa+1] = T [s].

1. If no symbol is found⇒ `a = 0

2. We compute the minimum function for the lcp visited values, obtaining rmq(pa+1, p) as soon as we find
T [pa+1] = T [s]

s LCP BWT suffixes
1 - b banana$

s → 2 - a anana$
3 0 a $

4 0 n a$

r → 5 1 n ana$ T [a, n]
pa+1 → 6 0 a na$ T [a + 1, n]

p → 7 2 $ nana$ T [s + 1, n]

BWT(Ts+1) and LCP(Ts+1)

s LCP BWT suffixes
1 - b banana$

2 0 a $

3 0 n a$

4 1 n ana$ T [a, n]
r → 5 `a = 3 $ anana$ T [s, n]

6 `b = ? a na$ T [a + 1, n]
p → 7 2 a nana$ T [s + 1, n]

BWT(Ts) and LCP(Ts)

I Computing `b is symmetric.

Felipe A. Louza Eng. augmented suffix sorting alg. 18 / 48

Our contribution

BWT in-place and LCP array:

I The analysis remains the same:

I O(n2) time:

I Additional cost: O(n − i) time scan to compute `a , `b and to shift LCP.

I O(1) workspace:

I Needs only four additional variables to store pa+1 and pb+1 and the values of `a and `b .

I The C code is quite short (45 lines) and clean.

LCP array in compressed representation:

I Our algorithm performs only sequential scans to compute BWT and LCP array.

I lcp-values can be easily encoded and decoded during such scans using a universal code, such as Elias
δ-codes [Eli75].

Tradeoff:

I We provide a theoretical time/space tradeoff for our algorithm when additional memory is
allowed.

Felipe A. Louza Eng. augmented suffix sorting alg. 19 / 48

Our contribution

BWT in-place and LCP array:

I The analysis remains the same:

I O(n2) time:

I Additional cost: O(n − i) time scan to compute `a , `b and to shift LCP.

I O(1) workspace:

I Needs only four additional variables to store pa+1 and pb+1 and the values of `a and `b .

I The C code is quite short (45 lines) and clean.

LCP array in compressed representation:

I Our algorithm performs only sequential scans to compute BWT and LCP array.

I lcp-values can be easily encoded and decoded during such scans using a universal code, such as Elias
δ-codes [Eli75].

Tradeoff:

I We provide a theoretical time/space tradeoff for our algorithm when additional memory is
allowed.

Felipe A. Louza Eng. augmented suffix sorting alg. 19 / 48

Outline

1. Introduction

2. Burrows-Wheeler transform and LCP array construction in constant space

3. Optimal suffix sorting and LCP array construction for constant alphabets

4. Inducing enhanced suffix arrays for string collections

5. Contributions

6. References

Felipe A. Louza Eng. augmented suffix sorting alg. 20 / 48

Optimal suffix sorting and LCP construction

Suffix array:

I Several algorithms to construct SA in O(n) time:

I SAIS: O(n) time using O(n log n) bits of workspace [NZC11].
I SACA-K: O(n) time using σ log n bits of workspace [Non13].

LCP array:

I Can be constructed in O(n) time given T [1, n] and SA (e.g. [KLA+01, Man04, KMP09]).
I Φ−algorithm by [KMP09]: O(n) time using n log n bits of workspace.

Suffix and LCP arrays:

I SAIS+LCP: Fischer [Fis11] showed how to modify SAIS to also compute the LCP array.
I O(n) time using O(n log n) bits of workspace.

I Our contribution:
I SACA-K+LCP.
I O(n) time using σ log n bits of workspace.

Felipe A. Louza Eng. augmented suffix sorting alg. 21 / 48

Optimal suffix sorting and LCP construction

Suffix array:

I Several algorithms to construct SA in O(n) time:

I SAIS: O(n) time using O(n log n) bits of workspace [NZC11].
I SACA-K: O(n) time using σ log n bits of workspace [Non13].

LCP array:

I Can be constructed in O(n) time given T [1, n] and SA (e.g. [KLA+01, Man04, KMP09]).
I Φ−algorithm by [KMP09]: O(n) time using n log n bits of workspace.

Suffix and LCP arrays:

I SAIS+LCP: Fischer [Fis11] showed how to modify SAIS to also compute the LCP array.
I O(n) time using O(n log n) bits of workspace.

I Our contribution:
I SACA-K+LCP.
I O(n) time using σ log n bits of workspace.

Felipe A. Louza Eng. augmented suffix sorting alg. 21 / 48

Optimal suffix sorting and LCP construction

Suffix array:

I Several algorithms to construct SA in O(n) time:

I SAIS: O(n) time using O(n log n) bits of workspace [NZC11].
I SACA-K: O(n) time using σ log n bits of workspace [Non13].

LCP array:

I Can be constructed in O(n) time given T [1, n] and SA (e.g. [KLA+01, Man04, KMP09]).
I Φ−algorithm by [KMP09]: O(n) time using n log n bits of workspace.

Suffix and LCP arrays:

I SAIS+LCP: Fischer [Fis11] showed how to modify SAIS to also compute the LCP array.
I O(n) time using O(n log n) bits of workspace.

I Our contribution:
I SACA-K+LCP.
I O(n) time using σ log n bits of workspace.

Felipe A. Louza Eng. augmented suffix sorting alg. 21 / 48

Related Work

SAIS [NZC11] and SACA-K [Non13]:

I Induced sorting: is to deduce the order of unsorted suffixes from a set of already sorted.

I The suffixes T [i, n] are classified according to their rank relative to T [i + 1, n].

S, L and LMS-types:

I T [i, n] is S-type if T [i, n] < T [i + 1, n], otherwise T [i, n] is L-type. The last T [n, n] is S-type.

I T [i, n] is LMS-type if T [i, n] is S-type and T [i − 1, n] is L-type. The last T [n, n] is LMS?.

I Consecutive LMS-suffixes are used to define LMS-substrings.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

b a n a a n a n a a n a n a $T =

L S L S S L S L S S L S L L S

∗ ∗ ∗ ∗ ∗ ∗

type =

a n a a n a a n a $

a a n a a a n a $
LMS-subs =

Key observations:

I LMS-suffixes are enough to induce the order of all suffixes of T .

I LMS-substrings can be used to reduced the problem.

?The suffix classification can be done in linear time.

Felipe A. Louza Eng. augmented suffix sorting alg. 22 / 48

Related Work

SAIS [NZC11] and SACA-K [Non13]:

1. Step 1: Sorting the LMS-suffixes:

I The LMS-substrings are sorted using a modified version of SAIS (bucket-sorting in SA).

I Step 2’: The last symbol of each LMS-substring is added into the end its bucket.
I The order of the LMS-substrings of size 1 induce the order of L- and S- types in Steps 3’ and 4’.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

b a n a a n a n a a n a n a $T =

L S L S S L S L S S L S L L Stype =

a n a a n a a n a $

a a n a a a n a $
LMS-substrings =

15 4 7 9 12

15 14 13 3 6 8 11

15 14 4 9 12 2 5 7 10 13 3 6 8 11

15 4 9 12 2 7

$ a a a a a

a a n n n

n n a a a

a a $

SA =

SA =

SA =

Step 2’

Step 3’

Step 4’

(bucketing)

(L-type)

(S-type)

Within each c-bucket, L-type are smaller than S-type suffixes.

Felipe A. Louza Eng. augmented suffix sorting alg. 23 / 48

Related Work

SAIS [NZC11] and SACA-K [Non13]:

1. Step 1: Sorting the LMS-suffixes:

I The LMS-substrings are sorted using a modified version of SAIS (bucket-sorting in SA).

I Step 2’: The last symbol of each LMS-substring is added into the end its bucket.
I The order of the LMS-substrings of size 1 induce the order of L- and S- types in Steps 3’ and 4’.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

b a n a a n a n a a n a n a $T =

L S L S S L S L S S L S L L Stype =

a n a a n a a n a $

a a n a a a n a $
LMS-substrings =

15 4 7 9 12

15 14 13 3 6 8 11

15 14 4 9 12 2 5 7 10 13 3 6 8 11

15 4 9 12 2 7

$ a a a a a

a a n n n

n n a a a

a a $

SA =

SA =

SA =

Step 2’

Step 3’

Step 4’

(bucketing)

(L-type)

(S-type)

Within each c-bucket, L-type are smaller than S-type suffixes.

Felipe A. Louza Eng. augmented suffix sorting alg. 23 / 48

Related Work

SAIS [NZC11] and SACA-K [Non13]:

1. Step 1: Sorting the LMS-suffixes:

I The LMS-substrings are sorted using a modified version of SAIS (bucket-sorting in SA).

I Step 2’: The last symbol of each LMS-substring is added into the end its bucket.
I The order of the LMS-substrings of size 1 induce the order of L- and S- types in Steps 3’ and 4’.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

b a n a a n a n a a n a n a $T =

L S L S S L S L S S L S L L Stype =

a n a a n a a n a $

a a n a a a n a $
LMS-substrings =

15 4 7 9 12

15 14 13 3 6 8 11

15 14 4 9 12 2 5 7 10 13 3 6 8 11

15 4 9 12 2 7

$ a a a a a

a a n n n

n n a a a

a a $

SA =

SA =

SA =

Step 2’

Step 3’

Step 4’

(bucketing)

(L-type)

(S-type)

Within each c-bucket, L-type are smaller than S-type suffixes.

Felipe A. Louza Eng. augmented suffix sorting alg. 23 / 48

Related Work

SAIS [NZC11] and SACA-K [Non13]:

1. Step 1: Sorting the LMS-suffixes:

I The LMS-substrings are sorted using a modified version of SAIS (bucket-sorting in SA).

I Step 2’: The last symbol of each LMS-substring is added into the end its bucket.
I The order of the LMS-substrings of size 1 induce the order of L- and S- types in Steps 3’ and 4’.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

b a n a a n a n a a n a n a $T =

L S L S S L S L S S L S L L Stype =

a n a a n a a n a $

a a n a a a n a $
LMS-substrings =

15 4 7 9 12

15 14 13 3 6 8 11

15 14 4 9 12 2 5 7 10 13 3 6 8 11

15 4 9 12 2 7

$ a a a a a

a a n n n

n n a a a

a a $

SA =

SA =

SA =

Step 2’

Step 3’

Step 4’

(bucketing)

(L-type)

(S-type)

Within each c-bucket, L-type are smaller than S-type suffixes.

Felipe A. Louza Eng. augmented suffix sorting alg. 23 / 48

Related Work

SAIS [NZC11] and SACA-K [Non13]:

1. Step 1: Sorting the LMS-suffixes:

I Each LMS-substring ri receives a name vi according to its rank?.
I A new (shorter) string T 1 = v1v2 . . . vn1 is created.

I If all symbols (ranks) of T 1 are unique⇒ all LMS-suffixes are sorted.
I Otherwise, the problem is solved recursively?. [link]
I Sorting all suffixes of T 1 is equivalent to sorting all LMS-suffixes of T .

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

b a n a a n a n a a n a n a $T =

L S L S S L S L S S L S L L Stype =

a n a

a a n a

a n a

a a n a

a n a $

$

LMS-substrings =

4

2

4

2

3

1

Names

1 2 3 4 5 6

4 2 4 2 3 1T 1 =

L S L S S Stype =

?Naming of SAIS and SACA-K differs.
?The alphabet of T 1 is integer, and T 1 is also terminated by a unique smallest sentinel.

Felipe A. Louza Eng. augmented suffix sorting alg. 24 / 48

Related Work

SAIS [NZC11] and SACA-K [Non13]:

1. Step 1: Sorting the LMS-suffixes:

I Each LMS-substring ri receives a name vi according to its rank?.
I A new (shorter) string T 1 = v1v2 . . . vn1 is created.

I If all symbols (ranks) of T 1 are unique⇒ all LMS-suffixes are sorted.
I Otherwise, the problem is solved recursively?. [link]
I Sorting all suffixes of T 1 is equivalent to sorting all LMS-suffixes of T .

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

b a n a a n a n a a n a n a $T =

L S L S S L S L S S L S L L Stype =

a n a

a a n a

a n a

a a n a

a n a $

$

LMS-substrings =

4

2

4

2

3

1

Names

1 2 3 4 5 6

4 2 4 2 3 1T 1 =

L S L S S Stype =

?Naming of SAIS and SACA-K differs.
?The alphabet of T 1 is integer, and T 1 is also terminated by a unique smallest sentinel.

Felipe A. Louza Eng. augmented suffix sorting alg. 24 / 48

Related Work

SAIS [NZC11] and SACA-K [Non13]:

1. Step 1: Sorting the LMS-suffixes:

I Each LMS-substring ri receives a name vi according to its rank?.
I A new (shorter) string T 1 = v1v2 . . . vn1 is created.

I If all symbols (ranks) of T 1 are unique⇒ all LMS-suffixes are sorted.
I Otherwise, the problem is solved recursively?. [link]
I Sorting all suffixes of T 1 is equivalent to sorting all LMS-suffixes of T .

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

b a n a a n a n a a n a n a $T =

L S L S S L S L S S L S L L Stype =

a n a

a a n a

a n a

a a n a

a n a $

$

LMS-substrings =

4

2

4

2

3

1

Names

1 2 3 4 5 6

4 2 4 2 3 1T 1 =

L S L S S Stype =

?Naming of SAIS and SACA-K differs.
?The alphabet of T 1 is integer, and T 1 is also terminated by a unique smallest sentinel.

Felipe A. Louza Eng. augmented suffix sorting alg. 24 / 48

Related Work

SAIS [NZC11] and SACA-K [Non13]:

I Step 2: LMS-suffixes are mapped to the end of its buckets?.

I Step 3: Scan SA, 1, 2, . . . , n, if T [SA[i]− 1, n] is L-type, induce SA[i]− 1 into the head of its bucket.

I Step 4: Scan SA, n, n− 1, . . . , 1, if T [SA[i]− 1, n] is S-type, induce SA[i]− 1 into the end of its bucket.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

b a n a a n a n a a n a n a $T =

L S L S S L S L S S L S L L Stype =

15 9 4 12 7 2

15 9 4 12 7 2

15 14 1 13 8 3 11 6

15 14 9 4 12 7 2 10 5 1 13 8 3 11 6

Step 1

SA =

Step 2

SA =

Step 3

SA =

Step 4

SA =

(LMS-type)

(L-type)

(S-type)

Sorting

Mapping

Inducing

Inducing

recursive

?Within each c-bucket, L-type are smaller than S-type suffixes.

Felipe A. Louza Eng. augmented suffix sorting alg. 25 / 48

Related Work

SAIS [NZC11] and SACA-K [Non13]:

I Step 2: LMS-suffixes are mapped to the end of its buckets?.

I Step 3: Scan SA, 1, 2, . . . , n, if T [SA[i]− 1, n] is L-type, induce SA[i]− 1 into the head of its bucket.

I Step 4: Scan SA, n, n− 1, . . . , 1, if T [SA[i]− 1, n] is S-type, induce SA[i]− 1 into the end of its bucket.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

b a n a a n a n a a n a n a $T =

L S L S S L S L S S L S L L Stype =

15 9 4 12 7 2

15 9 4 12 7 2

15 14 1 13 8 3 11 6

15 14 9 4 12 7 2 10 5 1 13 8 3 11 6

Step 1

SA =

Step 2

SA =

Step 3

SA =

Step 4

SA =

(LMS-type)

(L-type)

(S-type)

Sorting

Mapping

Inducing

Inducing

recursive

?Within each c-bucket, L-type are smaller than S-type suffixes.

Felipe A. Louza Eng. augmented suffix sorting alg. 25 / 48

Related Work

SAIS [NZC11] and SACA-K [Non13]:

I Step 2: LMS-suffixes are mapped to the end of its buckets?.

I Step 3: Scan SA, 1, 2, . . . , n, if T [SA[i]− 1, n] is L-type, induce SA[i]− 1 into the head of its bucket.

I Step 4: Scan SA, n, n− 1, . . . , 1, if T [SA[i]− 1, n] is S-type, induce SA[i]− 1 into the end of its bucket.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

b a n a a n a n a a n a n a $T =

L S L S S L S L S S L S L L Stype =

15 9 4 12 7 2

15 9 4 12 7 2

15 14 1 13 8 3 11 6

15 14 9 4 12 7 2 10 5 1 13 8 3 11 6

Step 1

SA =

Step 2

SA =

Step 3

SA =

Step 4

SA =

(LMS-type)

(L-type)

(S-type)

Sorting

Mapping

Inducing

Inducing

recursive

?Within each c-bucket, L-type are smaller than S-type suffixes.

Felipe A. Louza Eng. augmented suffix sorting alg. 25 / 48

Related Work

SAIS [NZC11] and SACA-K [Non13]:

I Time complexity: O(n).

I Step 1, the reduced problem is at most n/2.
I Steps 2, 3 and 4 may be performed in linear time (scan-based).

I Workspace:

I The space used by SA suffices for storing both SA1 and T 1 along all recursive calls.
I SAIS: 0.5n log n + n bits?.
I SACA-K: σ log n bits?.

?It is dominated by the bucket array and type array
?Only for the bucket array at the top recursion level. The type of each T [i, n] on-the-fly in constant time

Felipe A. Louza Eng. augmented suffix sorting alg. 26 / 48

Related Work

SAIS [NZC11] and SACA-K [Non13]:

I Time complexity: O(n).

I Step 1, the reduced problem is at most n/2.
I Steps 2, 3 and 4 may be performed in linear time (scan-based).

I Workspace:

I The space used by SA suffices for storing both SA1 and T 1 along all recursive calls.
I SAIS: 0.5n log n + n bits?.
I SACA-K: σ log n bits?.

?It is dominated by the bucket array and type array
?Only for the bucket array at the top recursion level. The type of each T [i, n] on-the-fly in constant time

Felipe A. Louza Eng. augmented suffix sorting alg. 26 / 48

Related Work

SAIS [NZC11] and SACA-K [Non13]:

I Time complexity: O(n).

I Step 1, the reduced problem is at most n/2.
I Steps 2, 3 and 4 may be performed in linear time (scan-based).

I Workspace:

I The space used by SA suffices for storing both SA1 and T 1 along all recursive calls.
I SAIS: 0.5n log n + n bits?.
I SACA-K: σ log n bits?.

?It is dominated by the bucket array and type array
?Only for the bucket array at the top recursion level. The type of each T [i, n] on-the-fly in constant time

Felipe A. Louza Eng. augmented suffix sorting alg. 26 / 48

Related Work

SAIS [NZC11] and SACA-K [Non13]:

I Time complexity: O(n).

I Step 1, the reduced problem is at most n/2.
I Steps 2, 3 and 4 may be performed in linear time (scan-based).

I Workspace:

I The space used by SA suffices for storing both SA1 and T 1 along all recursive calls.
I SAIS: 0.5n log n + n bits?.
I SACA-K: σ log n bits?.

?It is dominated by the bucket array and type array
?Only for the bucket array at the top recursion level. The type of each T [i, n] on-the-fly in constant time

Felipe A. Louza Eng. augmented suffix sorting alg. 26 / 48

Related Work

SAIS+LCP [Fis11]:

I Key observation: the lcp values of induced suffixes can also be induced.

Modifications:

I Step 1: the lcp-values of the LMS-suffixes are computed recursively.

I The lcp-values are “scaled-up” from names in T 1 to name lengths in the LMS-substrings. [link]

I Step 2: the lcp-values are mapped in the LCP-array.

I Steps 3 and 4:

I Whenever T [x, n] and T [y , n] are induced and placed at adjacent positions k − 1 and k, LCP[k] can
be induced from:

lcp(T [x, n],T [y , n]) = lcp(T [x + 1, n],T [y + 1, n]) + 1 = rmq(i, j) + 1

.

Figure: Inducing the LCP array [Fis11]

The lcp between the last L-suffix and the first S-suffix of each c-bucket by direct comparison (only equal symbols).

Felipe A. Louza Eng. augmented suffix sorting alg. 27 / 48

Related Work

SAIS+LCP [Fis11]:

I Key observation: the lcp values of induced suffixes can also be induced.

Modifications:

I Step 1: the lcp-values of the LMS-suffixes are computed recursively.

I The lcp-values are “scaled-up” from names in T 1 to name lengths in the LMS-substrings. [link]

I Step 2: the lcp-values are mapped in the LCP-array.

I Steps 3 and 4:

I Whenever T [x, n] and T [y , n] are induced and placed at adjacent positions k − 1 and k, LCP[k] can
be induced from:

lcp(T [x, n],T [y , n]) = lcp(T [x + 1, n],T [y + 1, n]) + 1 = rmq(i, j) + 1

.

Figure: Inducing the LCP array [Fis11]

The lcp between the last L-suffix and the first S-suffix of each c-bucket by direct comparison (only equal symbols).

Felipe A. Louza Eng. augmented suffix sorting alg. 27 / 48

Related Work

SAIS+LCP [Fis11]:

I Key observation: the lcp values of induced suffixes can also be induced.

Modifications:

I Step 1: the lcp-values of the LMS-suffixes are computed recursively.

I The lcp-values are “scaled-up” from names in T 1 to name lengths in the LMS-substrings. [link]

I Step 2: the lcp-values are mapped in the LCP-array.

I Steps 3 and 4:

I Whenever T [x, n] and T [y , n] are induced and placed at adjacent positions k − 1 and k, LCP[k] can
be induced from:

lcp(T [x, n],T [y , n]) = lcp(T [x + 1, n],T [y + 1, n]) + 1 = rmq(i, j) + 1

.

Figure: Inducing the LCP array [Fis11]

The lcp between the last L-suffix and the first S-suffix of each c-bucket by direct comparison (only equal symbols).

Felipe A. Louza Eng. augmented suffix sorting alg. 27 / 48

Related Work

SAIS+LCP [Fis11]:

I RMQ-alternatives:

1. Scan the whole interval LCP[i, j] for each rmq → O(n2) time.

2. Keep an array C [1, σ] up-to-date, C [c] stores the minimum LCP between the current suffix and the
last induced suffix starting with c → in O(nσ) time?.

3. An improved alternative is to use a semi-dynamic rmq data structure [FH07] to solve the rmqs in
O(1) time using 2n + o(n) bits → in O(n) time.

?To keep C up-to-date, at each step an O(σ) time procedure is performed to update all values of C .

Felipe A. Louza Eng. augmented suffix sorting alg. 28 / 48

Related Work

SAIS+LCP [Fis11]:

I RMQ-alternatives:

1. Scan the whole interval LCP[i, j] for each rmq → O(n2) time.

2. Keep an array C [1, σ] up-to-date, C [c] stores the minimum LCP between the current suffix and the
last induced suffix starting with c → in O(nσ) time?.

3. An improved alternative is to use a semi-dynamic rmq data structure [FH07] to solve the rmqs in
O(1) time using 2n + o(n) bits → in O(n) time.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

b a n a a n a n a a n a n a $T =

15 9 4 12 7 2SA =

0 0 6 1 3 8LCP =

15 14 13 8 3 11 6SA =

0 1 7 2 4LCP =

$ a b n

0 0 0 3C =

(a)

(b)

(c)

?To keep C up-to-date, at each step an O(σ) time procedure is performed to update all values of C .

Felipe A. Louza Eng. augmented suffix sorting alg. 28 / 48

Related Work

SAIS+LCP [Fis11]:

I RMQ-alternatives:

1. Scan the whole interval LCP[i, j] for each rmq → O(n2) time.

2. Keep an array C [1, σ] up-to-date, C [c] stores the minimum LCP between the current suffix and the
last induced suffix starting with c → in O(nσ) time?.

3. An improved alternative is to use a semi-dynamic rmq data structure [FH07] to solve the rmqs in
O(1) time using 2n + o(n) bits → in O(n) time.

?To keep C up-to-date, at each step an O(σ) time procedure is performed to update all values of C .

Felipe A. Louza Eng. augmented suffix sorting alg. 28 / 48

Related Work

SAIS+LCP [Fis11]:

I Time complexity: depends on the rmq alternative?.

I O(n) time, with the improved alternative.

I Workspace:

I 1.5n log n + n+ 2n + o(n) bits?.

I The space used by LCP suffices for storing LCP1 along all recursive calls.

?Fischer has implemented an O(nσ)-time alternative.
?Two arrays of size n/2 for rank and size. And the rmq data structure.

Felipe A. Louza Eng. augmented suffix sorting alg. 29 / 48

Related Work

SAIS+LCP [Fis11]:

I Time complexity: depends on the rmq alternative?.

I O(n) time, with the improved alternative.

I Workspace:

I 1.5n log n + n+ 2n + o(n) bits?.

I The space used by LCP suffices for storing LCP1 along all recursive calls.

?Fischer has implemented an O(nσ)-time alternative.
?Two arrays of size n/2 for rank and size. And the rmq data structure.

Felipe A. Louza Eng. augmented suffix sorting alg. 29 / 48

Our contribution

SACA-K+LCP:

I We show how to construct the LCP array during SACA-K maintaining its theoretical
bounds.

I Our algorithm can be viewed as an adaptation of Fischer’s algorithm to SACA-K.

Problems:

I Step 1: the lcp-values of the LMS-suffixes are computed recursively.

I The procedure that scales up the lcp-values uses additional O(n log n) bits. [link]

I Step 3 and 4: inducing L- and S-suffixes.

I The O(1) time rmq-alternative uses additional 2n + o(n) bits bits.

I The O(σ) time uses additional σ log n bits.

I During the recursive calls, the alphabet size σ1 of T 1 is integer (σ1 = O(n/2)).

I The size of the auxiliary array C [1, σ1] is no longer constant.

Felipe A. Louza Eng. augmented suffix sorting alg. 30 / 48

Our contribution

SACA-K+LCP:

I We show how to construct the LCP array during SACA-K maintaining its theoretical
bounds.

I Our algorithm can be viewed as an adaptation of Fischer’s algorithm to SACA-K.

Problems:

I Step 1: the lcp-values of the LMS-suffixes are computed recursively.

I The procedure that scales up the lcp-values uses additional O(n log n) bits. [link]

I Step 3 and 4: inducing L- and S-suffixes.

I The O(1) time rmq-alternative uses additional 2n + o(n) bits bits.

I The O(σ) time uses additional σ log n bits.

I During the recursive calls, the alphabet size σ1 of T 1 is integer (σ1 = O(n/2)).

I The size of the auxiliary array C [1, σ1] is no longer constant.

Felipe A. Louza Eng. augmented suffix sorting alg. 30 / 48

Our contribution

SACA-K+LCP:

I We show how to construct the LCP array during SACA-K maintaining its theoretical
bounds.

I Our algorithm can be viewed as an adaptation of Fischer’s algorithm to SACA-K.

Problems:

I Step 1: the lcp-values of the LMS-suffixes are computed recursively.

I The procedure that scales up the lcp-values uses additional O(n log n) bits. [link]

I Step 3 and 4: inducing L- and S-suffixes.

I The O(1) time rmq-alternative uses additional 2n + o(n) bits bits.

I The O(σ) time uses additional σ log n bits.

I During the recursive calls, the alphabet size σ1 of T 1 is integer (σ1 = O(n/2)).

I The size of the auxiliary array C [1, σ1] is no longer constant.

Felipe A. Louza Eng. augmented suffix sorting alg. 30 / 48

Our contribution

SACA-K+LCP:

I We show how to construct the LCP array during SACA-K maintaining its theoretical
bounds.

I Our algorithm can be viewed as an adaptation of Fischer’s algorithm to SACA-K.

Problems:

I Step 1: the lcp-values of the LMS-suffixes are computed recursively.

I The procedure that scales up the lcp-values uses additional O(n log n) bits. [link]

I Step 3 and 4: inducing L- and S-suffixes.

I The O(1) time rmq-alternative uses additional 2n + o(n) bits bits.

I The O(σ) time uses additional σ log n bits.

I During the recursive calls, the alphabet size σ1 of T 1 is integer (σ1 = O(n/2)).

I The size of the auxiliary array C [1, σ1] is no longer constant.

Felipe A. Louza Eng. augmented suffix sorting alg. 30 / 48

Our contribution

SACA-K+LCP:

I Step 1:

I We compute LCP of the LMS-suffixes immediately at the top recursion level, just after sorting all
LMS-suffixes in Step 1.

I A sparse variant of the Φ-algorithm [KMP09] can be used.
I linear time.
I Additional O(n log n) bits to store Φ[1, n/2].

I The additional array can be stored in LCP[1, n]?, being subsequently overwritten. [link]

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

b a n a a n a n a a n a n a $T =

a n a a n a a n a $

a a n a a a n a $
LMS-substrings =

15 9 4 12 7 2SA =

0 0 6 1 3 8LCP =

SA

6

4

2

5

3

1

$

a a n a n a $

a a n a n a a n a n a $

a n a $

a n a a n a n a $

a n a a n a n a a n a n a $

LMS-suffixes

Step 1

Sorting

?Fischer observed that in the experimental section [Fis11].

Felipe A. Louza Eng. augmented suffix sorting alg. 31 / 48

Our contribution

SACA-K+LCP:

I Step 1:

I We compute LCP of the LMS-suffixes immediately at the top recursion level, just after sorting all
LMS-suffixes in Step 1.

I A sparse variant of the Φ-algorithm [KMP09] can be used.
I linear time.
I Additional O(n log n) bits to store Φ[1, n/2].

I The additional array can be stored in LCP[1, n]?, being subsequently overwritten. [link]

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

b a n a a n a n a a n a n a $T =

a n a a n a a n a $

a a n a a a n a $
LMS-substrings =

15 9 4 12 7 2SA =

0 0 6 1 3 8LCP =

SA

6

4

2

5

3

1

$

a a n a n a $

a a n a n a a n a n a $

a n a $

a n a a n a n a $

a n a a n a n a a n a n a $

LMS-suffixes

Step 1

Sorting

?Fischer observed that in the experimental section [Fis11].

Felipe A. Louza Eng. augmented suffix sorting alg. 31 / 48

Our contribution

SACA-K+LCP:

I Step 1:

I We compute LCP of the LMS-suffixes immediately at the top recursion level, just after sorting all
LMS-suffixes in Step 1.

I A sparse variant of the Φ-algorithm [KMP09] can be used.
I linear time.
I Additional O(n log n) bits to store Φ[1, n/2].

I The additional array can be stored in LCP[1, n]?, being subsequently overwritten. [link]

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

b a n a a n a n a a n a n a $T =

a n a a n a a n a $

a a n a a a n a $
LMS-substrings =

15 9 4 12 7 2SA =

0 0 6 1 3 8LCP =

SA

6

4

2

5

3

1

$

a a n a n a $

a a n a n a a n a n a $

a n a $

a n a a n a n a $

a n a a n a n a a n a n a $

LMS-suffixes

Step 1

Sorting

?Fischer observed that in the experimental section [Fis11].

Felipe A. Louza Eng. augmented suffix sorting alg. 31 / 48

Our contribution

SACA-K+LCP:

I Step 1:

I We augmented this idea by pre-computing LCP of the LMS-suffixes during naming?.
I Property: Any two consecutive LMS-suffixes share an lcp larger or equal to the lcp between the

LMS-substrings that were in those positions prior to the LMS-suffix sorting.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

b a n a a n a n a a n a n a $T =

a n a a n a a n a $

a a n a a a n a $
LMS-substrings =

15 4 9 12 2 7SA =

0 0 4 1 0 3LCP =

15 9 4 12 7 2SA =

0 0 6 1 3 8LCP =

SA

15

4

9

12

2

7

$

a a n a

a a n a

a n a $

a n a

a n a

LMS-substrings

SA1

6

4

2

5

3

1

$

a a n a n a $

a a n a n a a n a n a $

a n a $

a n a a n a n a $

a n a a n a n a a n a n a $

LMS-suffixes

Step 1

Sorting LMS-substrings

Sorting

?Where each consecutive LMS-substrings is compared to assign its name.

Felipe A. Louza Eng. augmented suffix sorting alg. 32 / 48

Our contribution

SACA-K+LCP:

I Step 1:

I We augmented this idea by pre-computing LCP of the LMS-suffixes during naming?.
I Property: Any two consecutive LMS-suffixes share an lcp larger or equal to the lcp between the

LMS-substrings that were in those positions prior to the LMS-suffix sorting.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

b a n a a n a n a a n a n a $T =

a n a a n a a n a $

a a n a a a n a $
LMS-substrings =

15 4 9 12 2 7SA =

0 0 4 1 0 3LCP =

15 9 4 12 7 2SA =

0 0 6 1 3 8LCP =

SA

15

4

9

12

2

7

$

a a n a

a a n a

a n a $

a n a

a n a

LMS-substrings

SA1

6

4

2

5

3

1

$

a a n a n a $

a a n a n a a n a n a $

a n a $

a n a a n a n a $

a n a a n a n a a n a n a $

LMS-suffixes

Step 1

Sorting LMS-substrings

Sorting

?Where each consecutive LMS-substrings is compared to assign its name.

Felipe A. Louza Eng. augmented suffix sorting alg. 32 / 48

Our contribution

SACA-K+LCP:

I Steps 3 and 4:

I rmq: O(nσ)-time alternative:

I We compute LCP only at the top recursion level→ O(nσ) time.

I Workspace: Additional σ log n bits to store C [1, σ].

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

b a n a a n a n a a n a n a $T =

15 9 4 12 7 2SA =

0 0 6 1 3 8LCP =

15 14 13 8 3 11 6SA =

0 1 7 2 4LCP =

$ a b n

0 0 0 3C =

(a)

(b)

(c)

Felipe A. Louza Eng. augmented suffix sorting alg. 33 / 48

Our contribution

SACA-K+LCP:

I Time complexity:

I O(nσ) time.

I Workspace:

I O(σ log n) bits.

Optimal for string from constant alphabets σ = O(1).

Experiments:

I We implemented our algorithm in ANSI C.

I Source code: https://github.com/felipelouza/sacak-lcp.

I Experiments with Pizza & Chili datasets.

I We compared: SACA-K+LCP, SAIS+LCP and SACA-K followed by Φ-algorithm.

I Results: [link].

I SAIS+LCP was the fastest algorithm in all experiments.
I SACA-K+LCP was the only algorithm that kept the space usage constant: 10KB.

Felipe A. Louza Eng. augmented suffix sorting alg. 34 / 48

https://github.com/felipelouza/sacak-lcp

Outline

1. Introduction

2. Burrows-Wheeler transform and LCP array construction in constant space

3. Optimal suffix sorting and LCP array construction for constant alphabets

4. Inducing enhanced suffix arrays for string collections

5. Contributions

6. References

Felipe A. Louza Eng. augmented suffix sorting alg. 35 / 48

Inducing enhanced suffix arrays for string collections

String collections:

I Let T = T1,T2, . . . ,Td be a collection of d strings.

I Sorting all suffixes of T may be performed by sorting the concatenation of all strings.

Two common approaches to create the concatenated string T cat of total length (Σd
i=1ni) + 1 = N?.

1. T cat = T1[1, n1 − 1] · $1 · T2[1, n2 − 1] · $2 · · ·Td [1, nd − 1] · $d ·#
2. T cat = T1[1, n1 − 1] · $ · T2[1, n2 − 1] · $ · · ·Td [1, nd − 1] · $ ·#

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

b a n a n a $1 a n a b a $2 a n a n $3 #

b a n a n a $ a n a b a $ a n a n $ #

1. T cat =

2. T cat =

Drawbacks:

1. Increases the alphabet size of T cat by the number of strings σcat = O(d).

I Deteriorate the theoretical bounds of many algorithms → SACA-K’s workspace would increase to
O(d log N) bits.

2. Do not guarantee the relative order between equal suffixes of Ti and Tj , such that $ from Ti is smaller
than $ from Tj if and only if i < j .

I lcp-values may exceed the length of the strings.

?# < $ < $1 < $2 < . . . < $d are symbols not in Σ and are smaller than any symbol in the alphabet.

Felipe A. Louza Eng. augmented suffix sorting alg. 36 / 48

Inducing enhanced suffix arrays for string collections

String collections:

I Let T = T1,T2, . . . ,Td be a collection of d strings.

I Sorting all suffixes of T may be performed by sorting the concatenation of all strings.

Two common approaches to create the concatenated string T cat of total length (Σd
i=1ni) + 1 = N?.

1. T cat = T1[1, n1 − 1] · $1 · T2[1, n2 − 1] · $2 · · ·Td [1, nd − 1] · $d ·#
2. T cat = T1[1, n1 − 1] · $ · T2[1, n2 − 1] · $ · · ·Td [1, nd − 1] · $ ·#

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

b a n a n a $1 a n a b a $2 a n a n $3 #

b a n a n a $ a n a b a $ a n a n $ #

1. T cat =

2. T cat =

Drawbacks:

1. Increases the alphabet size of T cat by the number of strings σcat = O(d).

I Deteriorate the theoretical bounds of many algorithms → SACA-K’s workspace would increase to
O(d log N) bits.

2. Do not guarantee the relative order between equal suffixes of Ti and Tj , such that $ from Ti is smaller
than $ from Tj if and only if i < j .

I lcp-values may exceed the length of the strings.

?# < $ < $1 < $2 < . . . < $d are symbols not in Σ and are smaller than any symbol in the alphabet.

Felipe A. Louza Eng. augmented suffix sorting alg. 36 / 48

Inducing enhanced suffix arrays for string collections

String collections:

I Let T = T1,T2, . . . ,Td be a collection of d strings.

I Sorting all suffixes of T may be performed by sorting the concatenation of all strings.

Two common approaches to create the concatenated string T cat of total length (Σd
i=1ni) + 1 = N?.

1. T cat = T1[1, n1 − 1] · $1 · T2[1, n2 − 1] · $2 · · ·Td [1, nd − 1] · $d ·#
2. T cat = T1[1, n1 − 1] · $ · T2[1, n2 − 1] · $ · · ·Td [1, nd − 1] · $ ·#

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

b a n a n a $1 a n a b a $2 a n a n $3 #

b a n a n a $ a n a b a $ a n a n $ #

1. T cat =

2. T cat =

Drawbacks:

1. Increases the alphabet size of T cat by the number of strings σcat = O(d).

I Deteriorate the theoretical bounds of many algorithms → SACA-K’s workspace would increase to
O(d log N) bits.

2. Do not guarantee the relative order between equal suffixes of Ti and Tj , such that $ from Ti is smaller
than $ from Tj if and only if i < j .

I lcp-values may exceed the length of the strings.

?# < $ < $1 < $2 < . . . < $d are symbols not in Σ and are smaller than any symbol in the alphabet.

Felipe A. Louza Eng. augmented suffix sorting alg. 36 / 48

Inducing enhanced suffix arrays for string collections

String collections:

I Let T = T1,T2, . . . ,Td be a collection of d strings.

I Sorting all suffixes of T may be performed by sorting the concatenation of all strings.

Two common approaches to create the concatenated string T cat of total length (Σd
i=1ni) + 1 = N?.

1. T cat = T1[1, n1 − 1] · $1 · T2[1, n2 − 1] · $2 · · ·Td [1, nd − 1] · $d ·#
2. T cat = T1[1, n1 − 1] · $ · T2[1, n2 − 1] · $ · · ·Td [1, nd − 1] · $ ·#

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

b a n a n a $1 a n a b a $2 a n a n $3 #

b a n a n a $ a n a b a $ a n a n $ #

1. T cat =

2. T cat =

Drawbacks:

1. Increases the alphabet size of T cat by the number of strings σcat = O(d).

I Deteriorate the theoretical bounds of many algorithms → SACA-K’s workspace would increase to
O(d log N) bits.

2. Do not guarantee the relative order between equal suffixes of Ti and Tj , such that $ from Ti is smaller
than $ from Tj if and only if i < j .

I lcp-values may exceed the length of the strings.

?# < $ < $1 < $2 < . . . < $d are symbols not in Σ and are smaller than any symbol in the alphabet.

Felipe A. Louza Eng. augmented suffix sorting alg. 36 / 48

Inducing enhanced suffix arrays for string collections

Our contribution:

I We show how to modify SAIS [NZC11] and SACA-K [Non13] to sort T cat created by alternative 2 (same
separators).

I Maintaining their theoretical bounds.
I Respecting the order among all suffixes, Ti < Tj if and only if i < j?.
I Improving their practical performance.

I Moreover, we show how to compute during suffix sorting:

I LCP array (adapting ideas by [Fis11] and [LGT17b]). [link]

I Document array (DA). [link]

?In other words, we obtain the same results one would get using distinct separators.

Felipe A. Louza Eng. augmented suffix sorting alg. 37 / 48

Our contribution

gSAIS and gSACA-K

I Key observation:

1. In T cat every suffix starting with $ will be a LMS-type suffix, except for the last one.

2. These d − 1 LMS-type suffixes will generate a LMS-substring that will be sorted unnecessarily?.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

b a n a n a $ a n a b a $ a n a n $ #T cat =

L S L S L L S S L S L L S S L S L L Stype =

a n a $ a n a $ a n a #

a n a $ a b a $ a n $ #
LMS-substrings =

I To guarantee that a $ from string Ti will be smaller than a $ from Tj if and only if i < j :

1. We can use their positions T cat [i ′] = $ < T cat [j′] = $ if and only if i ′ < j′.

? if two suffixes are equal up to their separators $ then their symbols should not be compared any further

Felipe A. Louza Eng. augmented suffix sorting alg. 38 / 48

Our contribution

gSAIS and gSACA-K

I Key observation:

1. In T cat every suffix starting with $ will be a LMS-type suffix, except for the last one.

2. These d − 1 LMS-type suffixes will generate a LMS-substring that will be sorted unnecessarily?.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

b a n a n a $ a n a b a $ a n a n $ #T cat =

L S L S L L S S L S L L S S L S L L Stype =

a n a $ a n a $ a n a #

a n a $ a b a $ a n $ #
LMS-substrings =

I To guarantee that a $ from string Ti will be smaller than a $ from Tj if and only if i < j :

1. We can use their positions T cat [i ′] = $ < T cat [j′] = $ if and only if i ′ < j′.

? if two suffixes are equal up to their separators $ then their symbols should not be compared any further

Felipe A. Louza Eng. augmented suffix sorting alg. 38 / 48

Our contribution

gSAIS and gSACA-K

I Step 1: Sorting LMS-substrings.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

b a n a n a $ a n a b a $ a n a n $ #T cat =

L S L S L L S S L S L L S S L S L L Stype =

a n a $ a n a $ a n a #

a n a $ a b a $ a n $ #
LMS-substrings:

19 7 13 2 4SA =

19 18 6 12 11 17 5 3SA =

19 10 16 4 2SA =

19 7 13 18 10 16 4 2

$ $ $ a a a a

a a # b n n n

n n a $ a a

a a $ # $

b n

a

SA =

(a)

(b)

(c)

(d)

Sorting:

We do not insert the last symbol of the LMS-substrings starting with $ in the bucket-sorting.

Felipe A. Louza Eng. augmented suffix sorting alg. 39 / 48

Our contribution

gSAIS and gSACA-K

I Naming:

I Each LMS-substring starting with $ will receive a different name according to its position in T cat .
I The reduced string T 1 is created as usual.

I Note:

I The modifications are necessary only at the top recursion level.
I T 1 will be exactly the same when applied to T cat using alternative 1.

19 7 13 18 10 16 4 2

$ $ $ a a a a

a a # b n n n

n n a $ a a

a a $ # $

b n

a

SA =

1 2 3 4 5 6 7 8

Felipe A. Louza Eng. augmented suffix sorting alg. 40 / 48

Our contribution

gSAIS and gSACA-K

I Time complexity:

I The algorithms remain linear on the length of input, that is O(N).

I Workspace:

I The algorithms use the same amount of memory of their original versions.
I In particular, gSACA-K uses σ log N bits, which is optimal for constant alphabets.

I Theoretical improvement:

I Comparing gSACA-K and SACA-K applied to sort T cat created by alternative 1.
I The workspace of SACA-K is (σ + d) log N bits.

Felipe A. Louza Eng. augmented suffix sorting alg. 41 / 48

Experiments

gSAIS, gSACA-K

I All the algorithms were implemented in ANSI C.

I Source code: https://github.com/felipelouza/gsa-is.

I Data collections of size up to 16 GB:

collection σ N/230 d N/d max(|Ti |) mean lcp max lcp
pages 205 3.74 1,000 4,019,585 362,724,758 29,595.13 2,912,604
revision 203 0.39 20,433 20,527 2,000,452 31,612.79 1,995,055
influenza 15 0.56 394,217 1,516 2,867 533.83 2,379
wikipedia 208 8.32 3,903,703 2,288 224,488 27.12 61,055
reads 4 2.87 32,621,862 94 101 43.35 101
proteins 25 15.77 50,825,784 333 36,805 91.03 32,882

I We compared gSAIS and gSACA-K with SAIS and SACA-K applied to sort T cat :

1. SAIS* and SACA-K*: alternative 1 (integer string).

2. SAIS and SACA-K: alternative 2.

I We also compared gSAIS+LCP, gSACA-K+LCP, gSAIS+DA and gSACA-K+DA. [link]

Columns 7 and 8 show the average and maximum lcp-values computed on the single strings, which provide an approximation
for suffix sorting difficulty.

Felipe A. Louza Eng. augmented suffix sorting alg. 42 / 48

https://github.com/felipelouza/gsa-is

Experiments (SA)

Time (µsec/symbol):

I gSACA-K and SACA-K were the fastest algorithms.

I gSACA-K was faster when d is large (proteins and reads), it avoids sorting d − 1 LMS-substrings.

I Comparing with SACA-K*, the time spent by gSACA-K was 24.3% smaller than on the average.

pages revision

influenza wikipedia

reads proteins

0.2

0.4

0.6

0.1

0.2

0.3

0.4

0.1

0.2

0.3

0.4

0.25

0.50

0.75

1.00

0.2

0.4

0.6

0.25

0.50

0.75

1.00

1.25

1MB 10MB 128MB 1GB 4GB 16GB 1MB 10MB 128MB 1GB 4GB 16GB

R
u

n
n

in
g

ti
m

e
in

m
ic

ro
se

co
n

d
s

p
er

in
p

u
t

sy
m

b
ol

SAIS*

SACA-K*

SAIS

SACA-K

gSAIS

gSACA-K

Felipe A. Louza Eng. augmented suffix sorting alg. 43 / 48

Experiments (SA)

Peakspace (bytes/symbol):

I gSACA-K and SACA-K were the smallest.

I 5N + O(1) bytes when N < 231 and 9N + O(1) bytes otherwise.

I Note that when N > 231, the peak memory of all algorithms increases, since they use 64-bits integers.

pages revision

influenza wikipedia

reads proteins

5.0

7.5

10.0

12.5

15.0

5.0

7.5

10.0

12.5

15.0

5.0

7.5

10.0

12.5

15.0

1MB 10MB 128MB 1GB 4GB 16GB 1MB 10MB 128MB 1GB 4GB 16GB

P
ea

k
sp

ac
e

p
er

sy
m

b
ol

(i
n

b
y
te

s)

SAIS* SACA-K* SAIS, gSAIS SACA-K, gSACA-K

Felipe A. Louza Eng. augmented suffix sorting alg. 44 / 48

Experiments (SA)

Workspace (MB):

I SACA-K and gSACA-K: 1 KB when N < 231 and 2 KB otherwise.

I Optimal for strings from constant alphabets.

I SAIS*, SAIS and gSAIS are O(N log N) bits, whereas SACA-K* is O(d log N) bits.

pages revision

influenza wikipedia

reads proteins

0.01

1

100

10000

0.01

1

100

10000

0.01

1

100

10000

1MB 10MB 128MB 1GB 4GB 16GB 1MB 10MB 128MB 1GB 4GB 16GB

W
or

k
sp

ac
e

in
M

B

SAIS*,SAIS, gSAIS SACA-K* SACA-K, gSACA-K

Felipe A. Louza Eng. augmented suffix sorting alg. 45 / 48

Outline

1. Introduction

2. Burrows-Wheeler transform and LCP array construction in constant space

3. Optimal suffix sorting and LCP array construction for constant alphabets

4. Inducing enhanced suffix arrays for string collections

5. Contributions

6. References

Felipe A. Louza Eng. augmented suffix sorting alg. 46 / 48

Contributions

List of publications:

1. Felipe A. Louza; Travis Gagie; Guilherme P. Telles. Burrows-Wheeler transform and LCP array
construction in constant space. Journal of Discrete Algorithms. v. 42: 14-22, 2017.

2. Felipe A. Louza; Simon Gog; Guilherme P. Telles. Optimal suffix sorting and LCP array construction for
constant alphabets. Information Processing Letters, v. 118, 30-34, 2017.

3. Felipe A. Louza; Simon Gog; Guilherme P. Telles. Inducing enhanced suffix arrays for string collections.
Theoretical Computer Science, v. 678: 22-39, 2017.

4. Felipe A. Louza; Simon Gog; Guilherme P. Telles. Induced suffix sorting for string collections. In: DCC,
2016. 43-52.

5. Felipe A. Louza; Guilherme P. Telles. Computing the BWT and the LCP array in constant space. In:
IWOCA, 2015. 312-320.

Other publications:

1. Felipe A. Louza; Simon Gog; Leandro Zanotto, Guido Araujo, Guilherme P. Telles. Parallel computation
for the all-pairs suffix-prefix problem. In: SPIRE, 2016. 122-132.

2. William H. A. Tustumi; Simon Gog; Guilherme P. Telles; Felipe A. Louza. An improved algorithm for the
all-pairs suffix-prefix problem. Journal of Discrete Algorithms, v. 37, 34-43, 2016.

Felipe A. Louza Eng. augmented suffix sorting alg. 47 / 48

Contributions

List of publications:

1. Felipe A. Louza; Travis Gagie; Guilherme P. Telles. Burrows-Wheeler transform and LCP array
construction in constant space. Journal of Discrete Algorithms. v. 42: 14-22, 2017.

2. Felipe A. Louza; Simon Gog; Guilherme P. Telles. Optimal suffix sorting and LCP array construction for
constant alphabets. Information Processing Letters, v. 118, 30-34, 2017.

3. Felipe A. Louza; Simon Gog; Guilherme P. Telles. Inducing enhanced suffix arrays for string collections.
Theoretical Computer Science, v. 678: 22-39, 2017.

4. Felipe A. Louza; Simon Gog; Guilherme P. Telles. Induced suffix sorting for string collections. In: DCC,
2016. 43-52.

5. Felipe A. Louza; Guilherme P. Telles. Computing the BWT and the LCP array in constant space. In:
IWOCA, 2015. 312-320.

Other publications:

1. Felipe A. Louza; Simon Gog; Leandro Zanotto, Guido Araujo, Guilherme P. Telles. Parallel computation
for the all-pairs suffix-prefix problem. In: SPIRE, 2016. 122-132.

2. William H. A. Tustumi; Simon Gog; Guilherme P. Telles; Felipe A. Louza. An improved algorithm for the
all-pairs suffix-prefix problem. Journal of Discrete Algorithms, v. 37, 34-43, 2016.

Felipe A. Louza Eng. augmented suffix sorting alg. 47 / 48

Thank you!
Questions?

Felipe A. Louza Eng. augmented suffix sorting alg. 48 / 48

Outline

1. Introduction

2. Burrows-Wheeler transform and LCP array construction in constant space

3. Optimal suffix sorting and LCP array construction for constant alphabets

4. Inducing enhanced suffix arrays for string collections

5. Contributions

6. References

Felipe A. Louza Eng. augmented suffix sorting alg. 49 / 48

Uwe Baier.
Linear-time suffix sorting - a new approach for suffix array construction.
In Proc. CPM, pages 23:1–23:12, 2016.

Timo Bingmann, Johannes Fischer, and Vitaly Osipov.
Inducing suffix and LCP arrays in external memory.
ACM J. Experiment. Algorithmics, 21(2):2.3:1–2.3:27, 2016.

M. Burrows and D.J. Wheeler.
A block-sorting lossless data compression algorithm.
Technical report, Digital SRC Research Report, 1994.

Maxime Crochemore, Roberto Grossi, Juha Kärkkäinen, and Gad M. Landau.
Computing the Burrows-Wheeler transform in place and in small space.
J. Discret. Algorithms, 32:44–52, 2015.

Jasbir Dhaliwal, Simon J. Puglisi, and A. Turpin.
Trends in suffix sorting: A survey of low memory algorithms.
In Proc. ACSC, pages 91–98, 2012.

P Elias.
Universal codeword sets and representations of the integers.
IEEE Trans. on Information Theory, 21(2):194–203, March 1975.

Felipe A. Louza Eng. augmented suffix sorting alg. 50 / 48

Johannes Fischer and Volker Heun.
A new succinct representation of rmq-information and improvements in the enhanced suffix
array.
In Proc. ESCAPE, pages 459–470, 2007.

Johannes Fischer.
Inducing the LCP-Array.
In Proc. WADS, pages 374–385, 2011.

Keisuke Goto and Hideo Bannai.
Space efficient linear time Lempel-Ziv factorization for small alphabets.
In Proc. DCC, pages 163–172, 2014.

Gaston H. Gonnet, Ricardo A. Baeza-Yates, and Tim Snider.
New indices for text: Pat trees and pat arrays.
In Information Retrieval, pages 66–82. Prentice-Hall, Inc., Upper Saddle River, NJ, USA,
1992.

Simon Gog and Enno Ohlebusch.
Fast and lightweight LCP-array construction algorithms.
In Proc. ALENEX, pages 25–34, 2011.

Juha Kärkkäinen.
Suffix array construction.
In Encyclopedia of Algorithms, pages 2141–2144. Springer, 2016.

Felipe A. Louza Eng. augmented suffix sorting alg. 51 / 48

Juha Kärkkäinen, Dominik Kempa, Simon J. Puglisi, and Bella Zhukova.
Engineering external memory induced suffix sorting.
In Proc. ALENEX, pages 98–108, 2017.

Toru Kasai, Gunho Lee, Hiroki Arimura, Setsuo Arikawa, and Kunsoo Park.
Linear-time longest-common-prefix computation in suffix arrays and its applications.
In Proc. CPM, pages 181–192, 2001.

Juha Kärkkäinen, Giovanni Manzini, and Simon J. Puglisi.
Permuted longest-common-prefix array.
In Proc. CPM, pages 181–192, 2009.

Felipe Alves Louza, Travis Gagie, and Guilherme Pimentel Telles.
Burrows-wheeler transform and LCP array construction in constant space.
J. Discret. Algorithms, 42:14–22, 2017.

Felipe Alves Louza, Simon Gog, and Guilherme Pimentel Telles.
Optimal suffix sorting and LCP array construction for constant alphabets.
Inf. Process. Lett., 118:30–34, 2017.

Wei Jun Liu, Ge Nong, Wai Hong Chan, and Yi Wu.
Induced sorting suffixes in external memory with better design and less space.
In Proc. SPIRE, pages 83–94, 2015.

Giovanni Manzini.
Two space saving tricks for linear time LCP array computation.
In Proc. SWAT, pages 372–383, 2004.

Felipe A. Louza Eng. augmented suffix sorting alg. 52 / 48

Udi Manber and Eugene W Myers.
Suffix arrays: A new method for on-line string searches.
SIAM J. Comput., 22(5):935–948, 1993.

Ge Nong, Wai Hong Chan, Sheng Qing Hu, and Yi Wu.
Induced sorting suffixes in external memory.
ACM Trans. Inf. Syst., 33(3):12:1–12:15, 2015.

Ge Nong.
Practical linear-time O(1)-workspace suffix sorting for constant alphabets.
ACM Trans. Inform. Syst., 31(3):1–15, 2013.

Ge Nong, Sen Zhang, and Wai Hong Chan.
Two efficient algorithms for linear time suffix array construction.
IEEE Trans. Comput., 60(10):1471–1484, 2011.

Daisuke Okanohara and Kunihiko Sadakane.
A linear-time Burrows-Wheeler transform using induced sorting.
In Proc. SPIRE, pages 90–101, 2009.

Simon J. Puglisi, William F. Smyth, and Andrew H. Turpin.
A taxonomy of suffix array construction algorithms.
ACM Comp. Surv., 39(2):1–31, 2007.

Felipe A. Louza Eng. augmented suffix sorting alg. 53 / 48

Extra slides

Felipe A. Louza Eng. augmented suffix sorting alg. 54 / 48

Introduction

Suffix array construction algorithms (SACAs):

I Several SACAs have been proposed in the past 20 years [PST07, DPT12].

P
re

fix
D

ou
bl

in
g

Induced Copying Recursion

[PST07]
updated

MM
original

BW
BWT

F
O(n) tree

LS
runs

S
1/2 copy

IT
A/B copy

KSPP
mod2 split

KS
DC3

BK
diffcover

KA
L/S splitMaF

deep-shallow KJP
fixed Σ

Na
succinct

SS
bpr

M
chains

MP
cache aware NZ

O(n log |Σ|)

NZC
SAIS

Nong
SACA-K

AN
SFE-coding

1999
2000

2003

2004

2005

2006

2007

2009
2013

Figure by T. Bingmann.

? MM (1990s), linear time (2003), SAIS (2009) and SACA-K (2013).

Felipe A. Louza Eng. augmented suffix sorting alg. 55 / 48

Chapter 2

Felipe A. Louza Eng. augmented suffix sorting alg. 56 / 48

BWT and LCP construction in constant space

BWT in-place:

I Incremental step:

I Given BWT(Ts+1), stored in T [s + 1, n]:

1. Find position p of $.

2. Find the local rank r of T [s, n].

3. Replace $ by T [s].

4. Insert new suffix and preceding character $ into T [r].

s BWT suffixes
1 b banana$

s → 2 a anana$
3 a $

4 n a$

5 n ana$

6 a na$

p → 7 $ nana$

BWT(Ts+1)

s BWT suffixes
1 b banana$
2 a $

3 n a$

4 n ana$

r → 5 . . .
6 a na$

p → 7 $ nana$

Find local rank r

s BWT suffixes
1 b banana$

2 a $

3 n a$

4 n ana$

5 a...

6 a na$

p → 7 a nana$

Replace $

s BWT suffixes
1 b banana$

2 a $

3 n a$

4 n ana$

r → 5 $ anana$

6 a na$

7 a nana$

BWT(Ts)

I Step 2, finding r by LF-mapping:
I T [s] will be placed in T [p] ⇒ k-th α ∈ Σ in BWT(Ts) corresponds to k-th α in F .

I number of symbols smaller than T [s] in T [s + 1, n].
I number of symbols equal to T [s] in T [s + 1, r].

Felipe A. Louza Eng. augmented suffix sorting alg. 57 / 48

BWT and LCP construction in constant space

BWT in-place:

I Step 2 (find local position r):
I T [s] will be placed in T [p].

I LF-mapping: The i-th symbol α ∈ Σ in L corresponds to the i-th symbol α in F.

I To determine the position, we need to count:
I number of symbols smaller than T [s] in T [s + 1, n].
I number of symbols equal to T [s] in T [s + 1, r].

s BWT suffixes
1 b banana$

s → 2 a anana$
3 a $

4 n a$

5 n ana$

6 a na$

p → 7 $ nana$

BWT(Ts+1)

s BWT suffixes
1 b banana$

s → 2 a anana$
3 a $

4 n a$

5 n ana$

6 a na$

p → 7 a nana$

BWT(Ts+1)

s BWT suffixes
1 b banana$

s → 2 a anana$
3 a $

4 n a$

5 n ana$

6 a na$

p → 7 $ nana$

α < T [s]

s BWT suffixes
1 b banana$

s → 2 a anana$
3 a $

4 n a$

r → 5 n ana$

6 a na$

p → 7 a nana$

α = T [s]

Felipe A. Louza Eng. augmented suffix sorting alg. 58 / 48

Chapter 3

Felipe A. Louza Eng. augmented suffix sorting alg. 59 / 48

Optimal suffix sorting and LCP construction

SAIS and SACA-K:

I Key observations:
I The order of the LMS-suffixes are enough to induce the order of all suffixes of T
I The LMS-suffixes can be sorted recursively.

Induced sorting (IS) algorithm:

1. Sort the LMS-type suffixes and store in an auxiliary array SA1.

2. Scan SA1 from right to left, and insert each LMS-suffix of T into the tail of its c-bucket.

3. Scan SA from left to right, and for each T [SA[i], n] if T [SA[i]− 1, n] is L-type then insert SA[i]− 1 into
the head of its bucket.

4. Scan SA from right to left, and for each T [SA[i], n] if T [SA[i]− 1, n] is S-type then insert SA[i]− 1 into
the tail of its bucket.

Felipe A. Louza Eng. augmented suffix sorting alg. 60 / 48

Optimal suffix sorting and LCP construction

SAIS and SACA-K:

I Sorting LMS-substrings.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

b a n a a n a n a a n a n a $T =

L S L S S L S L S S L S L L Stype =

a n a a n a a n a $

a a n a a a n a $
LMS-substrings =

15 4 7 9 12

15 14 13 3 6 8 11

15 14 4 9 12 2 5 7 10 13 3 6 8 11

15 4 9 12 2 7

$ a a a a a

a a n n n

n n a a a

a a $

SA =

SA =

SA =

Step 2’

Step 3’

Step 4’

(bucketing)

(L-type)

(S-type)

Felipe A. Louza Eng. augmented suffix sorting alg. 61 / 48

Related Work

SAIS and SACA-K:

I Sorting T 1 recursively:

I The algorithm is recursively applied to sort the suffixes of T 1.
I The alphabet of T 1 is integer, and T 1 is also terminated by a unique smallest sentinel.

I Sorting all suffixes of T 1 is equivalent to sorting all LMS-suffixes of T .

1 2 3 4 5 6

4 2 4 2 3 1T 1 =

L S L S S Stype =

2 4 2

2 3 1

1

LMS-substrings =

3

2

1

Names

6 4 2SA1 = Step 3

6 4 2 5 3 1SA1 = Step 4

recursive

(S-type)

(L-type)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

b a n a a n a n a a n a n a $T =

L S L S S L S L S S L S L L S

1 2 3 4 5 6

type =

pos =

6

4

2

5

3

1

$

a a n a n a $

a a n a n a a n a n a $

a n a $

a n a a n a n a $

a n a a n a n a a n a n a $

LMS-suffixes

Nong et al. observed that the space used by SA suffices for storing both SA1 and T 1 along all recursive calls.

Felipe A. Louza Eng. augmented suffix sorting alg. 62 / 48

Nong, 2013:

Removing the bucket array from recursive calls?.

Naming:

I The names are indexes to positions of SA, such that:

I If Ti is L-type then T [i] = vi points to the head of its bucket.
I If Tj is S-type then T [j] = vj points to the end of its bucket.

I The relative order between all suffixes of T 1 is maintained ?.

a n a a n a a n a $

a a n a a a n a $
LMS-substrings =

4 2 4 2 3 1

L S L S L S

5 3 5 3 4 1

ranking =

T 1 =

1 2 3 4 5 6

SA1 = Naming

?In fact, if this problem has not been solved, the workspace of SACA-K would remain O(n log n) bits.

? Recall that the alphabet of T 1 is integer, suitable for such scheme.

Felipe A. Louza Eng. augmented suffix sorting alg. 63 / 48

Nong, 2013:

Nong presented SACA-K, the first linear time sorting algorithm also fast in practice using
constant space memory.

I SACA-K’s framework is similar to that of SA-IS?, its major improvement is the reduced
memory usage.

Key observations:

I The type array is no longer necessary.
I Step 1: type is used in to find (and compare) the LMS-substrings.
I Step 3 and 4: type is used to determine the type of TSA[i]−1.

q0start q1 q3
L-type

S-type

S-type

L-type

Figure: LMS-substring type pattern recognition, from T [i],T [i + 1] to T [j]

I The bucket array is only necessary at level 0, where the alphabet of T is constant.

?The naming procedure of SACA-K is different from that in SA-IS.

Felipe A. Louza Eng. augmented suffix sorting alg. 64 / 48

Related Work

SAIS+LCP:

I Key observation: the lcp values of induced suffixes can also be induced.

Modifications:

I Step 1: the lcp-values of the LMS-suffixes are computed recursively.

I The lcp-values are “scaled-up” from names in T 1 to name lengths in the LMS-substrings.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

b a n a a n a n a a n a n a $T =

L S L S S L S L S S L S L L S

∗ ∗ ∗ ∗ ∗ ∗

type =

4 2 4 2 3 1rank =

3 4 3 4 4 1size =

1 2 3 4 5 6

4 2 4 2 3 1T 1 =

6 4 2 5 3 1

1 2 2 3 4 4

3 4 1 2 2

1 2 3 4

3 1 2

1 3

1

SA1 =

1 2 3 4 5 6

0 0 1 3LCPrank =

0 0 1 0 0 2LCP1 =

7 (a) size(4)+size(2)

3 (b) lcprank(3, 4)

0 0 6 1 3 8LCP1 = (c) (a-1)+(b-1)

rank

1

2

3

4

$

a a n a

a n a $

a n a

LMS-substrings

SA1

6

4

2

5

3

1

$

a a n a n a $

a a n a n a a n a n a $

a n a $

a n a a n a n a $

a n a a n a n a a n a n a $

LMS-suffixes

LCPrank , rank, size: additional data structures.

Felipe A. Louza Eng. augmented suffix sorting alg. 65 / 48

Our contribution

SACA-K+LCP:

I Step 1:
I Φ-algorithm first computes the permuted LCP (PLCP) array and then derives LCP.

I PLCP∗ is the PLCP pre-computed by lcp-values of LMS-substrings.
I RA stores the distance between the suffixes being compared and their respective successors (in text order).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

b a n a a n a n a a n a n a $T =

a n a a n a a n a $

a a n a a a n a $
LMS-substrings =

6 4 2 5 3 1SA =

0 0 4 1 0 3LCP =

Computing SA1 in SA[1, 6] (recursive)

6 4 2 5 3 1 2 4 7 9 12 15SA =

3 4 5 6 2 0 3 4 0 0 1 0LCP =

Computing RA in SA[10, 15], PLCP∗ in LCP[10, 15], and Φ in LCP[1, 6]

← PLCP∗

← RA

6 4 2 5 3 1SA =

8 6 3 0 1 0LCP = ← PLCP

Computing PLCP in LCP[10, 15]

SA

15

4

9

12

2

7

$

a a n a

a a n a

a n a $

a n a

a n a

LMS-substrings

SA1

6

4

2

5

3

1

$

a a n a n a $

a a n a n a a n a n a $

a n a $

a n a a n a n a $

a n a a n a n a a n a n a $

LMS-suffixes

Sorting

Step 1

Felipe A. Louza Eng. augmented suffix sorting alg. 66 / 48

Our contribution

SACA-K+LCP:

I Step 2:

I Mapping:

I LCP[i] = PLCP[SA[i]].

I At the end, LCP1 is computed from PLCP, overwriting positions LCP[1, n/2].

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

b a n a a n a n a a n a n a $T =

a n a a n a a n a $

a a n a a a n a $
LMS-substrings =

6 4 2 5 3 1SA =

8 6 3 0 1 0LCP = ← PLCP

Computing PLCP in LCP[10, 15]

6 4 2 5 3 1SA =

0 0 6 1 3 8LCP =

Mapping PLCP into LCP1

SA

15

4

9

12

2

7

$

a a n a

a a n a

a n a $

a n a

a n a

LMS-substrings

SA1

6

4

2

5

3

1

$

a a n a n a $

a a n a n a a n a n a $

a n a $

a n a a n a n a $

a n a a n a n a a n a n a $

LMS-suffixes

Sorting

Step 1

Felipe A. Louza Eng. augmented suffix sorting alg. 67 / 48

Experiments

SACA-K+LCP:

I SAIS+LCP was the fastest algorithm in all experiments.
I SACA-K+LCP was the only algorithm that kept the space usage constant: 10KB.

I 1KB of SACA-K’s workspace added by 9KB used by data structures to solve the rmqs.

I Overhead:
I SACA-K+LCP vs. SACA-K and Φ-algorithm: similar speed using much less space.

speed [µs/byte] workspace [KB]

dataset σ n/210 S
A
C
A
-K

+
L
C
P

S
A
IS

+
L
C
P

S
A
C
A
-K

a
n

d
Φ

S
A
C
A
-K

Φ S
A
C
A
-K

+
L
C
P

S
A
IS

+
L
C
P

S
A
C
A
-K

a
n

d
Φ

sources 230 205,924 0.26 0.17 0.24 0.21 0.03 10 16 823,698

xml 97 289,195 0.28 0.18 0.26 0.23 0.03 10 14 1,156,781

dna 16 394,461 0.38 0.27 0.36 0.31 0.05 10 13 1,577,843

english.1G 239 1,071,976 0.43 0.31 0.42 0.35 0.07 10 15 4,287,904

proteins 27 1,156,300 0.41 0.30 0.40 0.34 0.06 10 13 4,625,201

einstein-de 117 90,584 0.34 0.18 0.33 0.30 0.03 10 14 362,338

kernel 160 251,916 0.28 0.16 0.26 0.23 0.03 10 14 1,007,662

fib41 2 261,635 0.34 0.18 0.30 0.27 0.03 10 13 1,046,540

cere 5 450,475 0.34 0.20 0.31 0.28 0.03 10 13 1,801,901

The workspace is the peak space subtracted of the space used by T , SA and LCP (9n bytes). SACA-K’s workspace is always
1 KB. Φ’s workspace is equal to 4n bytes and dominates SACA-K and Φ.

Felipe A. Louza Eng. augmented suffix sorting alg. 68 / 48

Chapter 4

Felipe A. Louza Eng. augmented suffix sorting alg. 69 / 48

Our contribution

gSAIS and gSACA-K

I Step 1 (during the LMS-substring sorting):

I We do not insert any LMS-suffix T cat [j,N] in its bucket if the next LMS-suffix T cat [i,N] to the left
starts with a $

I After sorting, we scan T cat [1,N] again inserting the LMS-suffixes directly into the $-bucket.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

b a n a n a $ a n a b a $ a n a n $ #T cat =

L S L S L L S S L S L L S S L S L L Stype =

a n a $ a n a $ a n a #

a n a $ a b a $ a n $ #
LMS-substrings:

19 7 13 2 4SA =

19 18 6 12 11 17 5 3SA =

19 10 16 4 2SA =

19 7 13 18 10 16 4 2SA =

(a)

(b)

(c)

(d)

Sorting:

Felipe A. Louza Eng. augmented suffix sorting alg. 70 / 48

Our contribution

gSAIS and gSACA-K

I Step 2’ (during the LMS-substring sorting):

I When the LMS-suffixes are inserted at its bucket, we reserve the last position of the $-bucket to
T cat [N − 1,N].

I Then, we insert the suffix T cat [N − 1,N] directly at the tail of its bucket in the end of Step 2.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

b a n a n a $ a n a b a $ a n a n $ #T cat =

L S L S L L S S L S L L S S L S L L Stype =

a n a $ a n a $ a n a #

a n a $ a b a $ a n $ #
LMS-substrings:

19 7 13 2 4SA =

19 18 6 12 11 17 5 3SA =

19 10 16 4 2SA =

19 7 13 18 10 16 4 2SA =

(a)

(b)

(c)

(d)

Sorting:

Felipe A. Louza Eng. augmented suffix sorting alg. 71 / 48

Our contribution

gSAIS+LCP and gSACA-K+LCP

I We slightly modified the ideas by [Fis11] and [LGT17a].

1. Our sparse variant of the Φ-algorithm may treat each separator $ as a distinct symbol?.

2. We compute directly the lcp-values in the $-bucket that will be equal to 0.

I Correctness:
I We do not induce L- or S-type suffixes starting with $ in Steps 3 and 4.

I Analysis:
I Our versions, gSAIS+LCP and gSACA-K+LCP, run in O(Nσ) time.
I The workspace of gSACA-K+LCP is 4σ log N bits.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

19 7 13 18 10 16 4 2SA =

0 0 0 0 1 1 2 3LCP =

19 7 13 18 6 12 10 16 4 2 11 17 5 9SA =

0 0 0 0 0 1 1 2 3 0 0 1 2LCP =

$ a b n

0 0 1 1 1C =

(a)

(b)

(c)

?This requires a straightforward modification in the algorithm.

Felipe A. Louza Eng. augmented suffix sorting alg. 72 / 48

Inducing enhanced suffix arrays for string collections

[link]

Document array (DA):

I The suffix array of T cat [1,N] is commonly accompanied by the document array (DA).

I DA[i] stores the index of the string which suffix T cat [SA[i],N] came from.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

b a n a n a $ a n a b a $ a n a n $ #2. T cat =

i SA LCP DA suffixes
1 19 0 4 #
2 18 0 3 $
3 7 0 1 $
4 13 0 2 $
5 6 0 1 a$
6 12 1 2 a$
7 10 1 2 aba$
8 16 1 3 an$
9 4 2 1 ana$

10 8 3 2 anaba$
11 14 3 3 anan$
12 2 4 1 anana$
13 11 0 2 ba$
14 1 2 1 banana$
15 17 0 3 n$
16 5 1 1 na$
17 9 2 2 naba$
18 15 2 3 nan$
19 3 3 1 nana$

DA[1] = d + 1 as the suffix T cat [N,N] = # is always in SA[1].

Felipe A. Louza Eng. augmented suffix sorting alg. 73 / 48

Our contribution

gSAIS+DA and gSACA-K+DA

I Step 2 (when the LMS-suffixes are mapped back)
I When scanning T cat [1,N] and ISA1:

(a) Starting from i = N,N − 1, . . . , 1 and k = d + 1. If T cat [i] = $ then k is decremented by one.

(b) If T cat [i,N] then DA[ISA1[j]] receives k.

(c) At the end, the DA-values are bucket sorted in DA.

I At the end, when T cat [N − 1,N] is inserted directly at the tail of its bucket, we also set DA as d .

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

b a n a n a $ a n a b a $ a n a n $ #T cat =

7 3 5 4 6 2 1 7 6 2 4 3 5 1SA =

19 7 13 10 16 4 2SA =

4 1 2 2 3 1 1DA =

19 7 13 18 10 16 4 2SA =

4 1 2 3 2 3 1 1DA =

(a)

(b)

(c)

Felipe A. Louza Eng. augmented suffix sorting alg. 74 / 48

Our contribution

gSAIS+DA and gSACA-K+DA

I Steps 3 and 4:

I Whenever a suffix T cat [i − 1,N] is induced in position SA[k], DA[k] is induced by the value in
DA[ISA[i]].

I Correctness:

I We do not induce L- or S-type suffixes starting with $ in Steps 3 and 4.

I Analysis:

I Our versions, gSAIS+DA and gSACA-K+DA, run in O(N) time.
I The workspace are the same of their original versions.

Felipe A. Louza Eng. augmented suffix sorting alg. 75 / 48

Experiments

SA and LCP: [link]

I Time: gSACA-K+LCP and gSACA-K combined with Φ were the fastest algorithms.

I Peakspace:

I gSACA-K+LCP: 9N + O(1) bytes when N < 231 and 17N + O(1) bytes otherwise.
I gSACA-K combined with Φ: 13N bytes when N < 231 and 25N bytes otherwise.

I Workspace:

I gSACA-K+LCP: 10 KB when N < 231 and 20 KB otherwise.
I gSACA-K combined with Φ: O(N log N) bits.

SA and DA: [link]

I Time: gSACA-K+DA and gSACA-K combined with bit were the fastest algorithms.

I Peakspace:

I gSACA-K+DA: 9N + O(1) bytes when N < 231 and 17N + O(1) bytes otherwise.
I gSACA-K combined with bit: 9N bytes + O(N) bits required by bit to solve the rank queries.

I Workspace:

I gSACA-K+DA: 1 KB when N < 231 and 2 KB otherwise.
I gSACA-K combined with bit: N + o(N) bits?.

?N bits to store the bitvector B[1,N] + o(N) bits for the rank data structure.

Felipe A. Louza Eng. augmented suffix sorting alg. 76 / 48

Experiments

SA and LCP: [link]

I Time: gSACA-K+LCP and gSACA-K combined with Φ were the fastest algorithms.

I Peakspace:

I gSACA-K+LCP: 9N + O(1) bytes when N < 231 and 17N + O(1) bytes otherwise.
I gSACA-K combined with Φ: 13N bytes when N < 231 and 25N bytes otherwise.

I Workspace:

I gSACA-K+LCP: 10 KB when N < 231 and 20 KB otherwise.
I gSACA-K combined with Φ: O(N log N) bits.

SA and DA: [link]

I Time: gSACA-K+DA and gSACA-K combined with bit were the fastest algorithms.

I Peakspace:

I gSACA-K+DA: 9N + O(1) bytes when N < 231 and 17N + O(1) bytes otherwise.
I gSACA-K combined with bit: 9N bytes + O(N) bits required by bit to solve the rank queries.

I Workspace:

I gSACA-K+DA: 1 KB when N < 231 and 2 KB otherwise.
I gSACA-K combined with bit: N + o(N) bits?.

?N bits to store the bitvector B[1,N] + o(N) bits for the rank data structure.

Felipe A. Louza Eng. augmented suffix sorting alg. 76 / 48

Experiments (SA and LCP)

Time:

I gSACA-K+LCP and gSACA-K combined with Φ were the fastest algorithms.

I Φ was terminated by the system for proteins with 15.77 GB, as it required more than 386 GB of RAM.

pages revision

influenza wikipedia

reads proteins

0.0

0.2

0.4

0.6

0.0

0.1

0.2

0.3

0.4

0.5

0.0

0.1

0.2

0.3

0.4

0.5

0.0

0.3

0.6

0.9

0.2

0.4

0.6

0.0

0.5

1.0

1.5

1MB 10MB 128MB 1GB 4GB 16GB 1MB 10MB 128MB 1GB 4GB 16GB

R
u
n
n
in

g
ti

m
e

in
m

ic
ro

se
co

n
d
s

p
er

in
p
u
t

sy
m

b
ol

Φ gSAIS and Φ gSACA-K and Φ gSAIS+LCP gSACA-K+LCP

Felipe A. Louza Eng. augmented suffix sorting alg. 77 / 48

Experiments (SA and LCP)

Peakspace:

I gSACA-K+LCP: 9N + O(1) bytes when N < 231 and 17N + O(1) bytes otherwise.

I gSACA-K combined with Φ: 13N bytes when N < 231 and 25N bytes otherwise.

pages revision

influenza wikipedia

reads proteins

10

15

20

25

10

15

20

25

10

15

20

25

1MB 10MB 128MB 1GB 4GB 16GB 1MB 10MB 128MB 1GB 4GB 16GB

P
ea

k
sp

ac
e

p
er

sy
m

b
ol

(i
n

b
y
te

s)

gSAIS and Φ, gSACA-K and Φ gSAIS+LCP gSACA-K+LCP

Felipe A. Louza Eng. augmented suffix sorting alg. 78 / 48

Experiments (SA and LCP)

Workspace:

I gSACA-K+LCP: 10 KB when N < 231 and 20 KB otherwise.

I gSAIS+LCP is O(N), whereas gSAIS and gSACA-K combined with Φ are dominated by the workspace
of Φ, which uses an additional integer array of size N.

pages revision

influenza wikipedia

reads proteins

0.1

10

1000

1e+05

0.1

10

1000

1e+05

0.1

10

1000

1e+05

1MB 10MB 128MB 1GB 4GB 16GB 1MB 10MB 128MB 1GB 4GB 16GB

W
or

k
sp

ac
e

in
M

B

gSAIS and Φ, gSACA-K and Φ gSAIS+LCP gSACA-K+LCP

Felipe A. Louza Eng. augmented suffix sorting alg. 79 / 48

Experiments (SA and DA)

Time:

I gSACA-K+DA and gSACA-K combined with bit were the fastest algorithms.

I The time added by computing the document array in gSACA-K+DA was 8.3% on the average?.

pages revision

influenza wikipedia

reads proteins

0.0

0.2

0.4

0.6

0.0

0.1

0.2

0.3

0.4

0.5

0.0

0.1

0.2

0.3

0.4

0.00

0.25

0.50

0.75

0.0

0.2

0.4

0.6

0.8

0.0

0.5

1.0

1.5

1MB 10MB 128MB 1GB 4GB 16GB 1MB 10MB 128MB 1GB 4GB 16GB

R
u
n
n
in

g
ti

m
e

in
m

ic
ro

se
co

n
d
s

p
er

in
p
u
t

sy
m

b
ol

bit

bit sd

gSAIS and bit

gSACA-K and bit

gSAIS and bit sd

gSACA-K and bit sd

gSAIS+DA

gSACA-K+DA

?Easier problem: this time is smaller than the overhead added by the LCP array construction in gSACA-K+LCP.

Felipe A. Louza Eng. augmented suffix sorting alg. 80 / 48

Experiments (SA and DA)

Peakspace:

I gSACA-K+DA: 9N + O(1) bytes when N < 231 and 17N + O(1) bytes otherwise.

I gSACA-K combined with bit: 9N bytes + O(N) bits required by bit to solve the rank queries.

pages revision

influenza wikipedia

reads proteins

10

12

14

16

18

10

12

14

16

18

10

12

14

16

18

1MB 10MB 128MB 1GB 4GB 16GB 1MB 10MB 128MB 1GB 4GB 16GB

P
ea

k
sp

ac
e

p
er

sy
m

b
ol

(i
n

b
y
te

s)

gSAIS and bit, gSACA-K and bit gSAIS and bit sd, gSACA-K and bit sd gSAIS+DA gSACA-K+DA

Felipe A. Louza Eng. augmented suffix sorting alg. 81 / 48

Experiments (SA and DA)

Workspace:
I gSACA-K+DA: 1 KB when N < 231 and 2 KB otherwise.
I gSAIS+DA is O(N), whereas the combined algorithms are dominated by bit and bit sd.
I gSACA-K combined with bit: N + o(N) bits?.

pages revision

influenza wikipedia

reads proteins

0.01

1

100

10000

0.01

1

100

10000

0.01

1

100

10000

1MB 10MB 128MB 1GB 4GB 16GB 1MB 10MB 128MB 1GB 4GB 16GB

W
or

k
sp

a
ce

in
M

B

gSAIS and bit, gSACA-K and bit gSAIS and bit sd, gSACA-K and bit sd gSAIS+DA gSACA-K+DA

?N bits to store the bitvector B[1,N] + o(N) bits for the rank data structure.

Felipe A. Louza Eng. augmented suffix sorting alg. 82 / 48

Chapter 5

Felipe A. Louza Eng. augmented suffix sorting alg. 83 / 48

Conclusions and future works

Our contributions:

1. BWT in-place and LCP array in O(n2)-time using O(1)-worskpace for unbounded alphabets.

I Future work: Investigate if it is possible to compute BWT and LCP compressed in only 2n + o(n)

bits, in quadratic or even o(n2) time.

2. SA and LCP array in O(n)-time using O(σ log n) bits of worskpace, which is optimal for
alphabets of constant size σ = O(1).

I Future work: Investigate whether the recent linear non-recursive SACA [Bai16] can also be adapted
to compute the LCP array.

3. Augmented suffix sorting algorithms for string collections in optimal time and space for
strings from constant alphabets.

I Future work: modify algorithms for single strings to handle string collections (e.g.
[BFO16, NCHW15, LNCW15, KKPZ17, OS09, GB14]).

Felipe A. Louza Eng. augmented suffix sorting alg. 84 / 48

Conclusions and future works

Our contributions:

1. BWT in-place and LCP array in O(n2)-time using O(1)-worskpace for unbounded alphabets.

I Future work: Investigate if it is possible to compute BWT and LCP compressed in only 2n + o(n)

bits, in quadratic or even o(n2) time.

2. SA and LCP array in O(n)-time using O(σ log n) bits of worskpace, which is optimal for
alphabets of constant size σ = O(1).

I Future work: Investigate whether the recent linear non-recursive SACA [Bai16] can also be adapted
to compute the LCP array.

3. Augmented suffix sorting algorithms for string collections in optimal time and space for
strings from constant alphabets.

I Future work: modify algorithms for single strings to handle string collections (e.g.
[BFO16, NCHW15, LNCW15, KKPZ17, OS09, GB14]).

Felipe A. Louza Eng. augmented suffix sorting alg. 84 / 48

Conclusions and future works

Our contributions:

1. BWT in-place and LCP array in O(n2)-time using O(1)-worskpace for unbounded alphabets.

I Future work: Investigate if it is possible to compute BWT and LCP compressed in only 2n + o(n)

bits, in quadratic or even o(n2) time.

2. SA and LCP array in O(n)-time using O(σ log n) bits of worskpace, which is optimal for
alphabets of constant size σ = O(1).

I Future work: Investigate whether the recent linear non-recursive SACA [Bai16] can also be adapted
to compute the LCP array.

3. Augmented suffix sorting algorithms for string collections in optimal time and space for
strings from constant alphabets.

I Future work: modify algorithms for single strings to handle string collections (e.g.
[BFO16, NCHW15, LNCW15, KKPZ17, OS09, GB14]).

Felipe A. Louza Eng. augmented suffix sorting alg. 84 / 48

	Introduction
	Burrows-Wheeler transform and LCP array construction in constant space
	Optimal suffix sorting and LCP array construction for constant alphabets
	Inducing enhanced suffix arrays for string collections
	Contributions
	References

