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Introduction

Suffix sorting:

I Is the problem of lexicographically ordering all suffixes of a string T of length n.

I Is a fundamental problem in string processing related to:

I Suffix array (SA) construction [MM93, GBYS92].

I Burrows-Wheeler transform (BWT) [BW94].

1 2 3 4 5 6 7

b a n a n a $T =

all suffixes
banana$

anana$

nana$

ana$

na$

a$

$

sort−−→

sorted suffixes
$

a$

ana$
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banana$

na$

nana$

suffix−−−→
array

i SA
1 7
2 6
3 4
4 2
5 1
6 5
7 3

BWT−−−→ annb$aa

We assume that T always ends with T [n] = $, called sentinel, which is not present elsewhere in T and precedes every symbol.
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Introduction

LCP-array:

I SA and BWT are commonly accompanied by the longest common prefix (LCP) array.

I Together, they are the basis of important full-text indexes.
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Figure by D. Kempa.
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Introduction

Suffix array construction algorithms (SACAs):

I Several SACAs have been proposed in the past 20 years [PST07, DPT12].

I In 2013, Nong [Non13] presented SACA-K, the first optimal algorithm.

Remark:

I This problem may be considered essentialy solved [Kär16].

Recent advances:

I Alternatives for external memory and parallel architectures?.

I Compute the LCP array and other structures simultaneously during suffix sorting.

Augmented Suffix Sorting
Our contributions:

1. BWT in-place and LCP array construction.

2. SA and LCP array construction in optimal time/space.

3. Augmented suffix sorting for string collections.

?One key to this approaches is the use of fast sequential algorithms.
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Notations

Strings:

I Let T be a string of length n, T = T [1, n], over a ordered alphabet of size σ.

Alphabet:

I constant: has size σ = O(1).

I integer: has size σ = nO(1).

I unbounded: otherwise.
1 2 3 4 5 6 7

b a n a n a $T =

I T [i ] is the i-th symbol of T .

I T [i , j] is the substring including symbols from T [i ] to T [j], i ≤ j .

I T [1, i ] is a prefix and a T [i , n] is a suffix of T .

Space:
I A string T [1, n] is stored in n log σ bits.

I 1 byte: ASCII.

I A permutation of integers in [1, n] is stored using n log n bits.
I 4 bytes if n < 231, 8 bytes otherwise.

Workspace:

I Is the extra space needed in addition to the space used by the input and output.
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Notations

SA and LCP array:

I SA: is an array of integers in the range [1, n] that gives the lexicographic order of all suffixes.

I LCP array: stores the length of the longest common prefix (lcp) of two consecutive suffixes.

I The arrays can be partitioned into σ buckets, one for each symbol in the alphabet.

1 2 3 4 5 6 7

b a n a n a $T =

sorted suffixes
i SA LCP T [SA[i ], n]
1 7 0 $

2 6 0 a$

3 4 1 ana$

4 2 3 anana$

5 1 0 banana$

6 5 0 na$

7 3 2 nana$

I The range minimum query (rmq) w.r.t LCP:

I rmq(i, j) = mini<k≤j{LCP[k]}.
I Given T and its LCP array we have:

lcp(T [SA[i ], n],T [SA[j], n]) = rmq(i, j)
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Notations

BWT:

I A reversible transformation that produces a permutation of T which tends to group the
occurrences of a symbol in runs [BW94].

I The BWT can be obtained sorting all the n circular shifts of T , and taking the last column.

I Can be defined in terms of SA:

BWT[i ] =

{
T [SA[i ]− 1] if SA[i ]− 1 > 0
$ otherwise.

F L
banana$ $banana
$banana a$banan

circular−−−−→
shifts

a$banan
sort−−→

ana$ban
last−−→

column
banana$ na$bana anana$b annb$aa

ana$ban banana$
nana$ba na$bana
anana$b nana$ba

i SA L F
1 7 a $
2 6 n a$
3 4 n ana$
4 2 b anana$
5 1 $ banana$
6 5 a na$
7 3 a nana$

I LF-mapping:

I The i-th symbol α in column L corresponds to the i-th symbol α in column F.
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BWT and LCP construction in constant space

BWT:

I Standard construction using SA in O(n) time.

I Workspace: O(n log n) bits ⇒ to store SA[1, n].

I Direct BWT construction (without SA):

I The most space-efficient is the O(n2) time BWT in-place due to Crochemore et al. [CGKL15].

BWT in-place and LCP array:

I Our contribution:

I We extend the BWT in-place [CGKL15] to also compute the LCP array in O(n2) time using O(1)
workspace.
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Related Work

BWT in-place [CGKL15]:

I Overwrites the input string T with the BWT, n, n − 1, . . . , 1:

I At each step i we have BWT of suffix T [s, n], called BWT(Ts ), with s = n − i + 1

I The position of $ in step i − 1 allows the construction of BWT(Ts ).

1 2 3 4 5 6 7

b a n a n a $T =

Step

b a n a n a $

b a n a a n $

b a n a n $ a

b a a n n a $

b a n n $ a a

a n n b $ a aBWT =

1

2

3

4

5

6

7
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Related Work

BWT in-place [CGKL15]:

I Incremental step:

I Given BWT(Ts+1), stored in T [s + 1, n]:

1. Replace $ by T [s].

2. Find the local rank r of T [s, n].

3. Insert new suffix and preceding character $ into T [r ].

s BWT suffixes
1 b banana$

s → 2 a anana$
3 a $

4 n a$

5 n ana$

6 a na$

p → 7 $ nana$

BWT(Ts+1)

s BWT suffixes
1 b banana$

s → 2 a anana$
3 a $

4 n a$

5 n ana$

6 a na$

p → 7 a nana$

Replace $

s BWT suffixes
1 b banana$
2 a $

3 n a$

4 n ana$

r → 5 a...

6 a na$

p → 7 a nana$

Find local rank r

s BWT suffixes
1 b banana$

2 a $

3 n a$

4 n ana$

r → 5 $ anana$

6 a na$

7 a nana$

BWT(Ts )

I Step 2 (LF-mapping):

I T [p] ⇒ k-th α in BWT(Ts ) corresponds to k-th α in F .
I To find r we count: number of α < T [s] in T [s + 1, n] and α = T [s] in T [s + 1, r ].

Felipe A. Louza Eng. augmented suffix sorting alg. 12 / 48



Related Work

BWT in-place [CGKL15]:

I Analysis (for unbounded alphabets):

I O(n2) time: each step i needs O(n − i) time for:

I Counting, inserting and moving symbols in T [s, n].

I O(1) workspace:

I Extra space needed for constant number of variables.
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Our contribution

BWT in-place and LCP array:

I Overwrites T with the BWT and computes the LCP array:

I At each step i we have BWT(Ts ) and LCP(Ts ) for the suffixes {T [s, n], . . . ,T [n, n]}, with
s = n − i + 1

1 2 3 4 5 6 7

b a n a n a $

0

T =

Step

b a n a n a $

0 0

b a n a a n $

0 0 0

b a n a n $ a

0 0 1 0

b a a n n a $

0 0 1 0 2

b a n n $ a a

0 0 1 3 0 2

a n n b $ a a

0 0 1 3 0 0 2

BWT =

LCP =

1

2

3

4

5

6

7

1 2 3 4 5 6 7 Step

Felipe A. Louza Eng. augmented suffix sorting alg. 14 / 48



Our contribution

BWT in-place and LCP array:

I Incremental step:

I Given BWT(Ts+1) and LCP(Ts+1), stored in T [s + 1, n] and LCP[s + 1, n]:

I Adding T [s, n] to the solution requires evaluating two values of lcp, adjacent to T [s, n].

1. LCP[r ]: lcp(T [a, n],T [s, n])→ T [a, n] the largest suffix smaller than T [s, n].

2. LCP[r + 1]: lcp(T [s, n],T [b, n])→ T [b, n] the smallest suffix larger than T [s, n].

I We will show how to compute LCP[r ] = `a = lcp(T [a, n],T [s, n])?:

s LCP BWT suffixes
1 - b banana$

2 0 a $

3 0 n a$

4 1 n ana$

r → 5 anana$

6 0 a na$

7 2 a nana$

s LCP BWT suffixes
1 - b banana$

2 0 a $

3 0 n a$

4 1 n ana$ T [a, n]
r → 5 `a = ? $ anana$ T [s, n]

r + 1→ 6 `b = ? a na$ T [b, n]
7 2 a nana$

? lcp(T [s, n],T [b, n]) may be computed in a similar fashion.
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Our contribution

BWT in-place and LCP array:

I Computing LCP[r ] = `a = lcp(T [a, n],T [s, n]):

I BWT(Ts+1) and LCP(Ts+1) are sufficient to compute these values.

1. `a = lcp(T [a, n],T [s, n]) = lcp(T [a + 1, n],T [s + 1, n]) + 1 if T [s] is equal to the first symbol of T [a, n],
otherwise LCP[r ] = 0.

2. We know the position of T [s + 1, n] is p from previous step.

3. We must find the position pa+1 of T [a + 1, n] in BWT(Ts+1).

`a =

{
rmq(pa+1, p) + 1 if T [pa+1] = BWT[s]
0 otherwise.

4 1 n ana$ T [a, n]
r → 5 `a = ? $ anana$ T [s, n]

pa+1 → 6 0 a na$ T [a + 1, n]
p → 7 2 a nana$ Ts+1

Felipe A. Louza Eng. augmented suffix sorting alg. 16 / 48



Our contribution

BWT in-place and LCP array:

I Computing `a:
I To find position pa+1 in BWT(Ts+1):

1. T [a, n] has rank r , after the Shift it goes to r − 1.

2. The symbol in BWT[pa+1]=T[a] (the first symbol of T [a, n]), that has rank r in BWT(Ts+1).

Question: Where is the symbol with rank r in BWT(Ts+1) ??

3. Property:

If BWT[pa+1] = T [s]⇒ pa+1 ∈ [s + 1, p)? and pa+1 is the largest value in [s + 1, p).

Otherwise, if pa+1 ∈ [p, n]⇒ BWT[pa+1] < T [s]⇒ `a = 0.

s LCP BWT suffixes
1 - b banana$

s → 2 - a anana$
3 0 a $

4 0 n a$

r → 5 1 n ana$ T [a, n]

pa+1 → 6 0 a na$ T [a + 1, n]
p → 7 2 $ nana$ T [s + 1, n]

BWT(Ts+1) and LCP(Ts+1)

?Any other symbol equal to T [s] in [p,n] would have a rank ≥ r + 1.
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Our contribution

BWT in-place and LCP array:

I Computing `a:

I Add: scan backwards BWT(Ts+1) from T [p − 1] to T [s + 1] until we find the first occurrence of
BWT[pa+1] = T [s].

1. If no symbol is found⇒ `a = 0

2. We compute the minimum function for the lcp visited values, obtaining rmq(pa+1, p) as soon as we find
T [pa+1] = T [s]

s LCP BWT suffixes
1 - b banana$

s → 2 - a anana$
3 0 a $

4 0 n a$

r → 5 1 n ana$ T [a, n]
pa+1 → 6 0 a na$ T [a + 1, n]

p → 7 2 $ nana$ T [s + 1, n]

BWT(Ts+1) and LCP(Ts+1)

s LCP BWT suffixes
1 - b banana$

2 0 a $

3 0 n a$

4 1 n ana$ T [a, n]
r → 5 `a = 3 $ anana$ T [s, n]

6 `b = ? a na$ T [a + 1, n]
p → 7 2 a nana$ T [s + 1, n]

BWT(Ts ) and LCP(Ts )

I Computing `b is symmetric.
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Our contribution

BWT in-place and LCP array:

I The analysis remains the same:

I O(n2) time:

I Additional cost: O(n − i) time scan to compute `a , `b and to shift LCP.

I O(1) workspace:

I Needs only four additional variables to store pa+1 and pb+1 and the values of `a and `b .

I The C code is quite short (45 lines) and clean.

LCP array in compressed representation:

I Our algorithm performs only sequential scans to compute BWT and LCP array.

I lcp-values can be easily encoded and decoded during such scans using a universal code, such as Elias
δ-codes [Eli75].

Tradeoff:

I We provide a theoretical time/space tradeoff for our algorithm when additional memory is
allowed.
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Optimal suffix sorting and LCP construction

Suffix array:

I Several algorithms to construct SA in O(n) time:

I SAIS: O(n) time using O(n log n) bits of workspace [NZC11].
I SACA-K: O(n) time using σ log n bits of workspace [Non13].

LCP array:

I Can be constructed in O(n) time given T [1, n] and SA (e.g. [KLA+01, Man04, KMP09]).
I Φ−algorithm by [KMP09]: O(n) time using n log n bits of workspace.

Suffix and LCP arrays:

I SAIS+LCP: Fischer [Fis11] showed how to modify SAIS to also compute the LCP array.
I O(n) time using O(n log n) bits of workspace.

I Our contribution:
I SACA-K+LCP.
I O(n) time using σ log n bits of workspace.
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Related Work

SAIS [NZC11] and SACA-K [Non13]:

I Induced sorting: is to deduce the order of unsorted suffixes from a set of already sorted.

I The suffixes T [i, n] are classified according to their rank relative to T [i + 1, n].

S, L and LMS-types:

I T [i, n] is S-type if T [i, n] < T [i + 1, n], otherwise T [i, n] is L-type. The last T [n, n] is S-type.

I T [i, n] is LMS-type if T [i, n] is S-type and T [i − 1, n] is L-type. The last T [n, n] is LMS?.

I Consecutive LMS-suffixes are used to define LMS-substrings.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

b a n a a n a n a a n a n a $T =

L S L S S L S L S S L S L L S

∗ ∗ ∗ ∗ ∗ ∗

type =

a n a a n a a n a $

a a n a a a n a $
LMS-subs =

Key observations:

I LMS-suffixes are enough to induce the order of all suffixes of T .

I LMS-substrings can be used to reduced the problem.

?The suffix classification can be done in linear time.
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Related Work

SAIS [NZC11] and SACA-K [Non13]:

1. Step 1: Sorting the LMS-suffixes:

I The LMS-substrings are sorted using a modified version of SAIS (bucket-sorting in SA).

I Step 2’: The last symbol of each LMS-substring is added into the end its bucket.
I The order of the LMS-substrings of size 1 induce the order of L- and S- types in Steps 3’ and 4’.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

b a n a a n a n a a n a n a $T =

L S L S S L S L S S L S L L Stype =

a n a a n a a n a $

a a n a a a n a $
LMS-substrings =

15 4 7 9 12

15 14 13 3 6 8 11

15 14 4 9 12 2 5 7 10 13 3 6 8 11

15 4 9 12 2 7

$ a a a a a

a a n n n

n n a a a

a a $

SA =

SA =

SA =

Step 2’

Step 3’

Step 4’

(bucketing)

(L-type)

(S-type)

Within each c-bucket, L-type are smaller than S-type suffixes.
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Related Work

SAIS [NZC11] and SACA-K [Non13]:

1. Step 1: Sorting the LMS-suffixes:

I Each LMS-substring ri receives a name vi according to its rank?.
I A new (shorter) string T 1 = v1v2 . . . vn1 is created.

I If all symbols (ranks) of T 1 are unique⇒ all LMS-suffixes are sorted.
I Otherwise, the problem is solved recursively?. [link]
I Sorting all suffixes of T 1 is equivalent to sorting all LMS-suffixes of T .

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

b a n a a n a n a a n a n a $T =

L S L S S L S L S S L S L L Stype =

a n a

a a n a

a n a

a a n a

a n a $

$

LMS-substrings =

4

2

4

2

3

1

Names

1 2 3 4 5 6

4 2 4 2 3 1T 1 =

L S L S S Stype =

?Naming of SAIS and SACA-K differs.
?The alphabet of T 1 is integer, and T 1 is also terminated by a unique smallest sentinel.
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Related Work

SAIS [NZC11] and SACA-K [Non13]:

I Step 2: LMS-suffixes are mapped to the end of its buckets?.

I Step 3: Scan SA, 1, 2, . . . , n, if T [SA[i ]− 1, n] is L-type, induce SA[i ]− 1 into the head of its bucket.

I Step 4: Scan SA, n, n− 1, . . . , 1, if T [SA[i ]− 1, n] is S-type, induce SA[i ]− 1 into the end of its bucket.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

b a n a a n a n a a n a n a $T =

L S L S S L S L S S L S L L Stype =

15 9 4 12 7 2

15 9 4 12 7 2

15 14 1 13 8 3 11 6

15 14 9 4 12 7 2 10 5 1 13 8 3 11 6

Step 1

SA =

Step 2

SA =

Step 3

SA =

Step 4

SA =

(LMS-type)

(L-type)

(S-type)

Sorting

Mapping

Inducing

Inducing

recursive

?Within each c-bucket, L-type are smaller than S-type suffixes.
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Related Work

SAIS [NZC11] and SACA-K [Non13]:

I Time complexity: O(n).

I Step 1, the reduced problem is at most n/2.
I Steps 2, 3 and 4 may be performed in linear time (scan-based).

I Workspace:

I The space used by SA suffices for storing both SA1 and T 1 along all recursive calls.
I SAIS: 0.5n log n + n bits?.
I SACA-K: σ log n bits?.

?It is dominated by the bucket array and type array
?Only for the bucket array at the top recursion level. The type of each T [i, n] on-the-fly in constant time
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Related Work

SAIS+LCP [Fis11]:

I Key observation: the lcp values of induced suffixes can also be induced.

Modifications:

I Step 1: the lcp-values of the LMS-suffixes are computed recursively.

I The lcp-values are “scaled-up” from names in T 1 to name lengths in the LMS-substrings. [link]

I Step 2: the lcp-values are mapped in the LCP-array.

I Steps 3 and 4:

I Whenever T [x, n] and T [y , n] are induced and placed at adjacent positions k − 1 and k, LCP[k] can
be induced from:

lcp(T [x, n],T [y , n]) = lcp(T [x + 1, n],T [y + 1, n]) + 1 = rmq(i, j) + 1

.

Figure: Inducing the LCP array [Fis11]

The lcp between the last L-suffix and the first S-suffix of each c-bucket by direct comparison (only equal symbols).
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Related Work

SAIS+LCP [Fis11]:

I RMQ-alternatives:

1. Scan the whole interval LCP[i, j] for each rmq → O(n2) time.

2. Keep an array C [1, σ] up-to-date, C [c] stores the minimum LCP between the current suffix and the
last induced suffix starting with c → in O(nσ) time?.

3. An improved alternative is to use a semi-dynamic rmq data structure [FH07] to solve the rmqs in
O(1) time using 2n + o(n) bits → in O(n) time.

?To keep C up-to-date, at each step an O(σ) time procedure is performed to update all values of C .
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0 1 7 2 4LCP =

$ a b n

0 0 0 3C =

(a)

(b)

(c)

?To keep C up-to-date, at each step an O(σ) time procedure is performed to update all values of C .

Felipe A. Louza Eng. augmented suffix sorting alg. 28 / 48



Related Work

SAIS+LCP [Fis11]:

I RMQ-alternatives:

1. Scan the whole interval LCP[i, j] for each rmq → O(n2) time.

2. Keep an array C [1, σ] up-to-date, C [c] stores the minimum LCP between the current suffix and the
last induced suffix starting with c → in O(nσ) time?.

3. An improved alternative is to use a semi-dynamic rmq data structure [FH07] to solve the rmqs in
O(1) time using 2n + o(n) bits → in O(n) time.

?To keep C up-to-date, at each step an O(σ) time procedure is performed to update all values of C .

Felipe A. Louza Eng. augmented suffix sorting alg. 28 / 48



Related Work

SAIS+LCP [Fis11]:

I Time complexity: depends on the rmq alternative?.

I O(n) time, with the improved alternative.

I Workspace:

I 1.5n log n + n+ 2n + o(n) bits?.

I The space used by LCP suffices for storing LCP1 along all recursive calls.

?Fischer has implemented an O(nσ)-time alternative.
?Two arrays of size n/2 for rank and size. And the rmq data structure.
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Our contribution

SACA-K+LCP:

I We show how to construct the LCP array during SACA-K maintaining its theoretical
bounds.

I Our algorithm can be viewed as an adaptation of Fischer’s algorithm to SACA-K.

Problems:

I Step 1: the lcp-values of the LMS-suffixes are computed recursively.

I The procedure that scales up the lcp-values uses additional O(n log n) bits. [link]

I Step 3 and 4: inducing L- and S-suffixes.

I The O(1) time rmq-alternative uses additional 2n + o(n) bits bits.

I The O(σ) time uses additional σ log n bits.

I During the recursive calls, the alphabet size σ1 of T 1 is integer (σ1 = O(n/2)).

I The size of the auxiliary array C [1, σ1] is no longer constant.
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Our contribution

SACA-K+LCP:

I Step 1:

I We compute LCP of the LMS-suffixes immediately at the top recursion level, just after sorting all
LMS-suffixes in Step 1.

I A sparse variant of the Φ-algorithm [KMP09] can be used.
I linear time.
I Additional O(n log n) bits to store Φ[1, n/2].

I The additional array can be stored in LCP[1, n]?, being subsequently overwritten. [link]

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

b a n a a n a n a a n a n a $T =

a n a a n a a n a $

a a n a a a n a $
LMS-substrings =

15 9 4 12 7 2SA =

0 0 6 1 3 8LCP =

SA

6

4

2

5

3

1

$

a a n a n a $

a a n a n a a n a n a $

a n a $

a n a a n a n a $

a n a a n a n a a n a n a $

LMS-suffixes

Step 1

Sorting

?Fischer observed that in the experimental section [Fis11].
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Our contribution

SACA-K+LCP:

I Step 1:

I We augmented this idea by pre-computing LCP of the LMS-suffixes during naming?.
I Property: Any two consecutive LMS-suffixes share an lcp larger or equal to the lcp between the

LMS-substrings that were in those positions prior to the LMS-suffix sorting.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

b a n a a n a n a a n a n a $T =

a n a a n a a n a $

a a n a a a n a $
LMS-substrings =

15 4 9 12 2 7SA =

0 0 4 1 0 3LCP =

15 9 4 12 7 2SA =

0 0 6 1 3 8LCP =

SA

15
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7
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a a n a

a a n a

a n a $

a n a

a n a

LMS-substrings

SA1

6
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2

5

3

1

$

a a n a n a $

a a n a n a a n a n a $

a n a $

a n a a n a n a $

a n a a n a n a a n a n a $

LMS-suffixes

Step 1

Sorting LMS-substrings

Sorting

?Where each consecutive LMS-substrings is compared to assign its name.
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Our contribution

SACA-K+LCP:

I Steps 3 and 4:

I rmq: O(nσ)-time alternative:

I We compute LCP only at the top recursion level→ O(nσ) time.

I Workspace: Additional σ log n bits to store C [1, σ].

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

b a n a a n a n a a n a n a $T =

15 9 4 12 7 2SA =

0 0 6 1 3 8LCP =

15 14 13 8 3 11 6SA =

0 1 7 2 4LCP =

$ a b n

0 0 0 3C =

(a)

(b)

(c)
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Our contribution

SACA-K+LCP:

I Time complexity:

I O(nσ) time.

I Workspace:

I O(σ log n) bits.

Optimal for string from constant alphabets σ = O(1).

Experiments:

I We implemented our algorithm in ANSI C.

I Source code: https://github.com/felipelouza/sacak-lcp.

I Experiments with Pizza & Chili datasets.

I We compared: SACA-K+LCP, SAIS+LCP and SACA-K followed by Φ-algorithm.

I Results: [link].

I SAIS+LCP was the fastest algorithm in all experiments.
I SACA-K+LCP was the only algorithm that kept the space usage constant: 10KB.
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Inducing enhanced suffix arrays for string collections

String collections:

I Let T = T1,T2, . . . ,Td be a collection of d strings.

I Sorting all suffixes of T may be performed by sorting the concatenation of all strings.

Two common approaches to create the concatenated string T cat of total length (Σd
i=1ni ) + 1 = N?.

1. T cat = T1[1, n1 − 1] · $1 · T2[1, n2 − 1] · $2 · · ·Td [1, nd − 1] · $d ·#
2. T cat = T1[1, n1 − 1] · $ · T2[1, n2 − 1] · $ · · ·Td [1, nd − 1] · $ ·#

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

b a n a n a $1 a n a b a $2 a n a n $3 #

b a n a n a $ a n a b a $ a n a n $ #

1. T cat =

2. T cat =

Drawbacks:

1. Increases the alphabet size of T cat by the number of strings σcat = O(d).

I Deteriorate the theoretical bounds of many algorithms → SACA-K’s workspace would increase to
O(d log N) bits.

2. Do not guarantee the relative order between equal suffixes of Ti and Tj , such that $ from Ti is smaller
than $ from Tj if and only if i < j .

I lcp-values may exceed the length of the strings.

?# < $ < $1 < $2 < . . . < $d are symbols not in Σ and are smaller than any symbol in the alphabet.
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Inducing enhanced suffix arrays for string collections

Our contribution:

I We show how to modify SAIS [NZC11] and SACA-K [Non13] to sort T cat created by alternative 2 (same
separators).

I Maintaining their theoretical bounds.
I Respecting the order among all suffixes, Ti < Tj if and only if i < j?.
I Improving their practical performance.

I Moreover, we show how to compute during suffix sorting:

I LCP array (adapting ideas by [Fis11] and [LGT17b]). [link]

I Document array (DA). [link]

?In other words, we obtain the same results one would get using distinct separators.
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Our contribution

gSAIS and gSACA-K

I Key observation:

1. In T cat every suffix starting with $ will be a LMS-type suffix, except for the last one.

2. These d − 1 LMS-type suffixes will generate a LMS-substring that will be sorted unnecessarily?.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

b a n a n a $ a n a b a $ a n a n $ #T cat =

L S L S L L S S L S L L S S L S L L Stype =

a n a $ a n a $ a n a #

a n a $ a b a $ a n $ #
LMS-substrings =

I To guarantee that a $ from string Ti will be smaller than a $ from Tj if and only if i < j :

1. We can use their positions T cat [i ′] = $ < T cat [j′] = $ if and only if i ′ < j′.

? if two suffixes are equal up to their separators $ then their symbols should not be compared any further
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Our contribution

gSAIS and gSACA-K

I Step 1: Sorting LMS-substrings.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

b a n a n a $ a n a b a $ a n a n $ #T cat =

L S L S L L S S L S L L S S L S L L Stype =

a n a $ a n a $ a n a #

a n a $ a b a $ a n $ #
LMS-substrings:

19 7 13 2 4SA =

19 18 6 12 11 17 5 3SA =

19 10 16 4 2SA =

19 7 13 18 10 16 4 2

# $ $ $ a a a a

a a # b n n n

n n a $ a a

a a $ # $

b n

a

SA =

(a)

(b)

(c)

(d)

Sorting:

We do not insert the last symbol of the LMS-substrings starting with $ in the bucket-sorting.
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Our contribution

gSAIS and gSACA-K

I Naming:

I Each LMS-substring starting with $ will receive a different name according to its position in T cat .
I The reduced string T 1 is created as usual.

I Note:

I The modifications are necessary only at the top recursion level.
I T 1 will be exactly the same when applied to T cat using alternative 1.

19 7 13 18 10 16 4 2

# $ $ $ a a a a

a a # b n n n

n n a $ a a

a a $ # $

b n

a

SA =

1 2 3 4 5 6 7 8

Felipe A. Louza Eng. augmented suffix sorting alg. 40 / 48



Our contribution

gSAIS and gSACA-K

I Time complexity:

I The algorithms remain linear on the length of input, that is O(N).

I Workspace:

I The algorithms use the same amount of memory of their original versions.
I In particular, gSACA-K uses σ log N bits, which is optimal for constant alphabets.

I Theoretical improvement:

I Comparing gSACA-K and SACA-K applied to sort T cat created by alternative 1.
I The workspace of SACA-K is (σ + d) log N bits.
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Experiments

gSAIS, gSACA-K

I All the algorithms were implemented in ANSI C.

I Source code: https://github.com/felipelouza/gsa-is.

I Data collections of size up to 16 GB:

collection σ N/230 d N/d max(|Ti |) mean lcp max lcp
pages 205 3.74 1,000 4,019,585 362,724,758 29,595.13 2,912,604
revision 203 0.39 20,433 20,527 2,000,452 31,612.79 1,995,055
influenza 15 0.56 394,217 1,516 2,867 533.83 2,379
wikipedia 208 8.32 3,903,703 2,288 224,488 27.12 61,055
reads 4 2.87 32,621,862 94 101 43.35 101
proteins 25 15.77 50,825,784 333 36,805 91.03 32,882

I We compared gSAIS and gSACA-K with SAIS and SACA-K applied to sort T cat :

1. SAIS* and SACA-K*: alternative 1 (integer string).

2. SAIS and SACA-K: alternative 2.

I We also compared gSAIS+LCP, gSACA-K+LCP, gSAIS+DA and gSACA-K+DA. [link]

Columns 7 and 8 show the average and maximum lcp-values computed on the single strings, which provide an approximation
for suffix sorting difficulty.
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Experiments (SA)

Time (µsec/symbol):

I gSACA-K and SACA-K were the fastest algorithms.

I gSACA-K was faster when d is large (proteins and reads), it avoids sorting d − 1 LMS-substrings.

I Comparing with SACA-K*, the time spent by gSACA-K was 24.3% smaller than on the average.
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Experiments (SA)

Peakspace (bytes/symbol):

I gSACA-K and SACA-K were the smallest.

I 5N + O(1) bytes when N < 231 and 9N + O(1) bytes otherwise.

I Note that when N > 231, the peak memory of all algorithms increases, since they use 64-bits integers.
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Experiments (SA)

Workspace (MB):

I SACA-K and gSACA-K: 1 KB when N < 231 and 2 KB otherwise.

I Optimal for strings from constant alphabets.

I SAIS*, SAIS and gSAIS are O(N log N) bits, whereas SACA-K* is O(d log N) bits.
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Thank you!
Questions?
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Juha Kärkkäinen, Giovanni Manzini, and Simon J. Puglisi.
Permuted longest-common-prefix array.
In Proc. CPM, pages 181–192, 2009.

Felipe Alves Louza, Travis Gagie, and Guilherme Pimentel Telles.
Burrows-wheeler transform and LCP array construction in constant space.
J. Discret. Algorithms, 42:14–22, 2017.

Felipe Alves Louza, Simon Gog, and Guilherme Pimentel Telles.
Optimal suffix sorting and LCP array construction for constant alphabets.
Inf. Process. Lett., 118:30–34, 2017.

Wei Jun Liu, Ge Nong, Wai Hong Chan, and Yi Wu.
Induced sorting suffixes in external memory with better design and less space.
In Proc. SPIRE, pages 83–94, 2015.

Giovanni Manzini.
Two space saving tricks for linear time LCP array computation.
In Proc. SWAT, pages 372–383, 2004.

Felipe A. Louza Eng. augmented suffix sorting alg. 52 / 48



Udi Manber and Eugene W Myers.
Suffix arrays: A new method for on-line string searches.
SIAM J. Comput., 22(5):935–948, 1993.

Ge Nong, Wai Hong Chan, Sheng Qing Hu, and Yi Wu.
Induced sorting suffixes in external memory.
ACM Trans. Inf. Syst., 33(3):12:1–12:15, 2015.

Ge Nong.
Practical linear-time O(1)-workspace suffix sorting for constant alphabets.
ACM Trans. Inform. Syst., 31(3):1–15, 2013.

Ge Nong, Sen Zhang, and Wai Hong Chan.
Two efficient algorithms for linear time suffix array construction.
IEEE Trans. Comput., 60(10):1471–1484, 2011.

Daisuke Okanohara and Kunihiko Sadakane.
A linear-time Burrows-Wheeler transform using induced sorting.
In Proc. SPIRE, pages 90–101, 2009.

Simon J. Puglisi, William F. Smyth, and Andrew H. Turpin.
A taxonomy of suffix array construction algorithms.
ACM Comp. Surv., 39(2):1–31, 2007.

Felipe A. Louza Eng. augmented suffix sorting alg. 53 / 48



Extra slides

Felipe A. Louza Eng. augmented suffix sorting alg. 54 / 48



Introduction

Suffix array construction algorithms (SACAs):

I Several SACAs have been proposed in the past 20 years [PST07, DPT12].

P
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fix
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ou
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in
g

Induced Copying Recursion

[PST07]
updated

MM
original

BW
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F
O(n) tree
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2013

Figure by T. Bingmann.

? MM (1990s), linear time (2003), SAIS (2009) and SACA-K (2013).
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Chapter 2
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BWT and LCP construction in constant space

BWT in-place:

I Incremental step:

I Given BWT(Ts+1), stored in T [s + 1, n]:

1. Find position p of $.

2. Find the local rank r of T [s, n].

3. Replace $ by T [s].

4. Insert new suffix and preceding character $ into T [r ].

s BWT suffixes
1 b banana$

s → 2 a anana$
3 a $

4 n a$

5 n ana$

6 a na$

p → 7 $ nana$

BWT(Ts+1)

s BWT suffixes
1 b banana$
2 a $

3 n a$

4 n ana$

r → 5 . . .
6 a na$

p → 7 $ nana$

Find local rank r

s BWT suffixes
1 b banana$

2 a $

3 n a$

4 n ana$

5 a...

6 a na$

p → 7 a nana$

Replace $

s BWT suffixes
1 b banana$

2 a $

3 n a$

4 n ana$

r → 5 $ anana$

6 a na$

7 a nana$

BWT(Ts )

I Step 2, finding r by LF-mapping:
I T [s] will be placed in T [p] ⇒ k-th α ∈ Σ in BWT(Ts ) corresponds to k-th α in F .

I number of symbols smaller than T [s] in T [s + 1, n].
I number of symbols equal to T [s] in T [s + 1, r ].
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BWT and LCP construction in constant space

BWT in-place:

I Step 2 (find local position r):
I T [s] will be placed in T [p].

I LF-mapping: The i-th symbol α ∈ Σ in L corresponds to the i-th symbol α in F.

I To determine the position, we need to count:
I number of symbols smaller than T [s] in T [s + 1, n].
I number of symbols equal to T [s] in T [s + 1, r ].

s BWT suffixes
1 b banana$

s → 2 a anana$
3 a $

4 n a$

5 n ana$

6 a na$

p → 7 $ nana$

BWT(Ts+1)

s BWT suffixes
1 b banana$

s → 2 a anana$
3 a $

4 n a$

5 n ana$

6 a na$

p → 7 a nana$

BWT(Ts+1)

s BWT suffixes
1 b banana$

s → 2 a anana$
3 a $

4 n a$

5 n ana$

6 a na$

p → 7 $ nana$

α < T [s]

s BWT suffixes
1 b banana$

s → 2 a anana$
3 a $

4 n a$

r → 5 n ana$

6 a na$

p → 7 a nana$

α = T [s]
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Chapter 3
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Optimal suffix sorting and LCP construction

SAIS and SACA-K:

I Key observations:
I The order of the LMS-suffixes are enough to induce the order of all suffixes of T
I The LMS-suffixes can be sorted recursively.

Induced sorting (IS) algorithm:

1. Sort the LMS-type suffixes and store in an auxiliary array SA1.

2. Scan SA1 from right to left, and insert each LMS-suffix of T into the tail of its c-bucket.

3. Scan SA from left to right, and for each T [SA[i ], n] if T [SA[i ]− 1, n] is L-type then insert SA[i ]− 1 into
the head of its bucket.

4. Scan SA from right to left, and for each T [SA[i ], n] if T [SA[i ]− 1, n] is S-type then insert SA[i ]− 1 into
the tail of its bucket.
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Optimal suffix sorting and LCP construction

SAIS and SACA-K:

I Sorting LMS-substrings.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

b a n a a n a n a a n a n a $T =

L S L S S L S L S S L S L L Stype =

a n a a n a a n a $

a a n a a a n a $
LMS-substrings =

15 4 7 9 12

15 14 13 3 6 8 11

15 14 4 9 12 2 5 7 10 13 3 6 8 11

15 4 9 12 2 7

$ a a a a a

a a n n n

n n a a a

a a $

SA =

SA =

SA =

Step 2’

Step 3’

Step 4’

(bucketing)

(L-type)

(S-type)
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Related Work

SAIS and SACA-K:

I Sorting T 1 recursively:

I The algorithm is recursively applied to sort the suffixes of T 1.
I The alphabet of T 1 is integer, and T 1 is also terminated by a unique smallest sentinel.

I Sorting all suffixes of T 1 is equivalent to sorting all LMS-suffixes of T .

1 2 3 4 5 6

4 2 4 2 3 1T 1 =

L S L S S Stype =

2 4 2

2 3 1

1

LMS-substrings =

3

2

1

Names

6 4 2SA1 = Step 3

6 4 2 5 3 1SA1 = Step 4

recursive

(S-type)

(L-type)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

b a n a a n a n a a n a n a $T =

L S L S S L S L S S L S L L S

1 2 3 4 5 6

type =

pos =

6

4

2

5

3

1

$

a a n a n a $

a a n a n a a n a n a $

a n a $

a n a a n a n a $

a n a a n a n a a n a n a $

LMS-suffixes

Nong et al. observed that the space used by SA suffices for storing both SA1 and T 1 along all recursive calls.
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Nong, 2013:

Removing the bucket array from recursive calls?.

Naming:

I The names are indexes to positions of SA, such that:

I If Ti is L-type then T [i ] = vi points to the head of its bucket.
I If Tj is S-type then T [j] = vj points to the end of its bucket.

I The relative order between all suffixes of T 1 is maintained ?.

a n a a n a a n a $

a a n a a a n a $
LMS-substrings =

4 2 4 2 3 1

L S L S L S

5 3 5 3 4 1

ranking =

T 1 =

1 2 3 4 5 6

SA1 = Naming

?In fact, if this problem has not been solved, the workspace of SACA-K would remain O(n log n) bits.

? Recall that the alphabet of T 1 is integer, suitable for such scheme.
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Nong, 2013:

Nong presented SACA-K, the first linear time sorting algorithm also fast in practice using
constant space memory.

I SACA-K’s framework is similar to that of SA-IS?, its major improvement is the reduced
memory usage.

Key observations:

I The type array is no longer necessary.
I Step 1: type is used in to find (and compare) the LMS-substrings.
I Step 3 and 4: type is used to determine the type of TSA[i ]−1.

q0start q1 q3
L-type

S-type

S-type

L-type

Figure: LMS-substring type pattern recognition, from T [i ],T [i + 1] to T [j]

I The bucket array is only necessary at level 0, where the alphabet of T is constant.

?The naming procedure of SACA-K is different from that in SA-IS.
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Related Work

SAIS+LCP:

I Key observation: the lcp values of induced suffixes can also be induced.

Modifications:

I Step 1: the lcp-values of the LMS-suffixes are computed recursively.

I The lcp-values are “scaled-up” from names in T 1 to name lengths in the LMS-substrings.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

b a n a a n a n a a n a n a $T =

L S L S S L S L S S L S L L S

∗ ∗ ∗ ∗ ∗ ∗

type =

4 2 4 2 3 1rank =

3 4 3 4 4 1size =

1 2 3 4 5 6

4 2 4 2 3 1T 1 =

6 4 2 5 3 1

1 2 2 3 4 4

3 4 1 2 2

1 2 3 4

3 1 2

1 3

1

SA1 =

1 2 3 4 5 6

0 0 1 3LCPrank =

0 0 1 0 0 2LCP1 =

7 (a) size(4)+size(2)

3 (b) lcprank(3, 4)

0 0 6 1 3 8LCP1 = (c) (a-1)+(b-1)

rank

1

2

3

4

$

a a n a

a n a $

a n a

LMS-substrings

SA1

6

4

2

5

3

1

$

a a n a n a $

a a n a n a a n a n a $

a n a $

a n a a n a n a $

a n a a n a n a a n a n a $

LMS-suffixes

LCPrank , rank, size: additional data structures.
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Our contribution

SACA-K+LCP:

I Step 1:
I Φ-algorithm first computes the permuted LCP (PLCP) array and then derives LCP.

I PLCP∗ is the PLCP pre-computed by lcp-values of LMS-substrings.
I RA stores the distance between the suffixes being compared and their respective successors (in text order).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

b a n a a n a n a a n a n a $T =

a n a a n a a n a $

a a n a a a n a $
LMS-substrings =

6 4 2 5 3 1SA =

0 0 4 1 0 3LCP =

Computing SA1 in SA[1, 6] (recursive)

6 4 2 5 3 1 2 4 7 9 12 15SA =

3 4 5 6 2 0 3 4 0 0 1 0LCP =

Computing RA in SA[10, 15], PLCP∗ in LCP[10, 15], and Φ in LCP[1, 6]

← PLCP∗

← RA

6 4 2 5 3 1SA =

8 6 3 0 1 0LCP = ← PLCP

Computing PLCP in LCP[10, 15]

SA

15

4

9

12

2

7

$

a a n a

a a n a

a n a $

a n a

a n a

LMS-substrings

SA1

6

4

2

5

3

1

$

a a n a n a $

a a n a n a a n a n a $

a n a $

a n a a n a n a $

a n a a n a n a a n a n a $

LMS-suffixes

Sorting

Step 1
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Our contribution

SACA-K+LCP:

I Step 2:

I Mapping:

I LCP[i ] = PLCP[SA[i ]].

I At the end, LCP1 is computed from PLCP, overwriting positions LCP[1, n/2].

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

b a n a a n a n a a n a n a $T =

a n a a n a a n a $

a a n a a a n a $
LMS-substrings =

6 4 2 5 3 1SA =

8 6 3 0 1 0LCP = ← PLCP

Computing PLCP in LCP[10, 15]

6 4 2 5 3 1SA =

0 0 6 1 3 8LCP =

Mapping PLCP into LCP1

SA

15

4

9

12

2

7

$

a a n a

a a n a

a n a $

a n a

a n a

LMS-substrings

SA1

6

4

2

5

3

1

$

a a n a n a $

a a n a n a a n a n a $

a n a $

a n a a n a n a $

a n a a n a n a a n a n a $

LMS-suffixes

Sorting

Step 1
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Experiments

SACA-K+LCP:

I SAIS+LCP was the fastest algorithm in all experiments.
I SACA-K+LCP was the only algorithm that kept the space usage constant: 10KB.

I 1KB of SACA-K’s workspace added by 9KB used by data structures to solve the rmqs.

I Overhead:
I SACA-K+LCP vs. SACA-K and Φ-algorithm: similar speed using much less space.

speed [µs/byte] workspace [KB]

dataset σ n/210 S
A
C
A
-K

+
L
C
P

S
A
IS

+
L
C
P

S
A
C
A
-K

a
n

d
Φ

S
A
C
A
-K

Φ S
A
C
A
-K

+
L
C
P

S
A
IS

+
L
C
P

S
A
C
A
-K

a
n

d
Φ

sources 230 205,924 0.26 0.17 0.24 0.21 0.03 10 16 823,698

xml 97 289,195 0.28 0.18 0.26 0.23 0.03 10 14 1,156,781

dna 16 394,461 0.38 0.27 0.36 0.31 0.05 10 13 1,577,843

english.1G 239 1,071,976 0.43 0.31 0.42 0.35 0.07 10 15 4,287,904

proteins 27 1,156,300 0.41 0.30 0.40 0.34 0.06 10 13 4,625,201

einstein-de 117 90,584 0.34 0.18 0.33 0.30 0.03 10 14 362,338

kernel 160 251,916 0.28 0.16 0.26 0.23 0.03 10 14 1,007,662

fib41 2 261,635 0.34 0.18 0.30 0.27 0.03 10 13 1,046,540

cere 5 450,475 0.34 0.20 0.31 0.28 0.03 10 13 1,801,901

The workspace is the peak space subtracted of the space used by T , SA and LCP (9n bytes). SACA-K’s workspace is always
1 KB. Φ’s workspace is equal to 4n bytes and dominates SACA-K and Φ.
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Chapter 4
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Our contribution

gSAIS and gSACA-K

I Step 1 (during the LMS-substring sorting):

I We do not insert any LMS-suffix T cat [j,N] in its bucket if the next LMS-suffix T cat [i,N] to the left
starts with a $

I After sorting, we scan T cat [1,N] again inserting the LMS-suffixes directly into the $-bucket.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

b a n a n a $ a n a b a $ a n a n $ #T cat =

L S L S L L S S L S L L S S L S L L Stype =

a n a $ a n a $ a n a #

a n a $ a b a $ a n $ #
LMS-substrings:

19 7 13 2 4SA =

19 18 6 12 11 17 5 3SA =

19 10 16 4 2SA =

19 7 13 18 10 16 4 2SA =

(a)

(b)

(c)

(d)

Sorting:
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Our contribution

gSAIS and gSACA-K

I Step 2’ (during the LMS-substring sorting):

I When the LMS-suffixes are inserted at its bucket, we reserve the last position of the $-bucket to
T cat [N − 1,N].

I Then, we insert the suffix T cat [N − 1,N] directly at the tail of its bucket in the end of Step 2.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

b a n a n a $ a n a b a $ a n a n $ #T cat =

L S L S L L S S L S L L S S L S L L Stype =

a n a $ a n a $ a n a #

a n a $ a b a $ a n $ #
LMS-substrings:

19 7 13 2 4SA =

19 18 6 12 11 17 5 3SA =

19 10 16 4 2SA =

19 7 13 18 10 16 4 2SA =

(a)

(b)

(c)

(d)

Sorting:
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Our contribution

gSAIS+LCP and gSACA-K+LCP

I We slightly modified the ideas by [Fis11] and [LGT17a].

1. Our sparse variant of the Φ-algorithm may treat each separator $ as a distinct symbol?.

2. We compute directly the lcp-values in the $-bucket that will be equal to 0.

I Correctness:
I We do not induce L- or S-type suffixes starting with $ in Steps 3 and 4.

I Analysis:
I Our versions, gSAIS+LCP and gSACA-K+LCP, run in O(Nσ) time.
I The workspace of gSACA-K+LCP is 4σ log N bits.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

19 7 13 18 10 16 4 2SA =

0 0 0 0 1 1 2 3LCP =

19 7 13 18 6 12 10 16 4 2 11 17 5 9SA =

0 0 0 0 0 1 1 2 3 0 0 1 2LCP =

# $ a b n

0 0 1 1 1C =

(a)

(b)

(c)

?This requires a straightforward modification in the algorithm.
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Inducing enhanced suffix arrays for string collections

[link]

Document array (DA):

I The suffix array of T cat [1,N] is commonly accompanied by the document array (DA).

I DA[i ] stores the index of the string which suffix T cat [SA[i ],N] came from.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

b a n a n a $ a n a b a $ a n a n $ #2. T cat =

i SA LCP DA suffixes
1 19 0 4 #
2 18 0 3 $
3 7 0 1 $
4 13 0 2 $
5 6 0 1 a$
6 12 1 2 a$
7 10 1 2 aba$
8 16 1 3 an$
9 4 2 1 ana$

10 8 3 2 anaba$
11 14 3 3 anan$
12 2 4 1 anana$
13 11 0 2 ba$
14 1 2 1 banana$
15 17 0 3 n$
16 5 1 1 na$
17 9 2 2 naba$
18 15 2 3 nan$
19 3 3 1 nana$

DA[1] = d + 1 as the suffix T cat [N,N] = # is always in SA[1].
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Our contribution

gSAIS+DA and gSACA-K+DA

I Step 2 (when the LMS-suffixes are mapped back)
I When scanning T cat [1,N] and ISA1:

(a) Starting from i = N,N − 1, . . . , 1 and k = d + 1. If T cat [i ] = $ then k is decremented by one.

(b) If T cat [i,N] then DA[ISA1[j]] receives k.

(c) At the end, the DA-values are bucket sorted in DA.

I At the end, when T cat [N − 1,N] is inserted directly at the tail of its bucket, we also set DA as d .

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

b a n a n a $ a n a b a $ a n a n $ #T cat =

7 3 5 4 6 2 1 7 6 2 4 3 5 1SA =

19 7 13 10 16 4 2SA =

4 1 2 2 3 1 1DA =

19 7 13 18 10 16 4 2SA =

4 1 2 3 2 3 1 1DA =

(a)

(b)

(c)
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Our contribution

gSAIS+DA and gSACA-K+DA

I Steps 3 and 4:

I Whenever a suffix T cat [i − 1,N] is induced in position SA[k], DA[k] is induced by the value in
DA[ISA[i ]].

I Correctness:

I We do not induce L- or S-type suffixes starting with $ in Steps 3 and 4.

I Analysis:

I Our versions, gSAIS+DA and gSACA-K+DA, run in O(N) time.
I The workspace are the same of their original versions.
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Experiments

SA and LCP: [link]

I Time: gSACA-K+LCP and gSACA-K combined with Φ were the fastest algorithms.

I Peakspace:

I gSACA-K+LCP: 9N + O(1) bytes when N < 231 and 17N + O(1) bytes otherwise.
I gSACA-K combined with Φ: 13N bytes when N < 231 and 25N bytes otherwise.

I Workspace:

I gSACA-K+LCP: 10 KB when N < 231 and 20 KB otherwise.
I gSACA-K combined with Φ: O(N log N) bits.

SA and DA: [link]

I Time: gSACA-K+DA and gSACA-K combined with bit were the fastest algorithms.

I Peakspace:

I gSACA-K+DA: 9N + O(1) bytes when N < 231 and 17N + O(1) bytes otherwise.
I gSACA-K combined with bit: 9N bytes + O(N) bits required by bit to solve the rank queries.

I Workspace:

I gSACA-K+DA: 1 KB when N < 231 and 2 KB otherwise.
I gSACA-K combined with bit: N + o(N) bits?.

?N bits to store the bitvector B[1,N] + o(N) bits for the rank data structure.
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Experiments (SA and LCP)

Time:

I gSACA-K+LCP and gSACA-K combined with Φ were the fastest algorithms.

I Φ was terminated by the system for proteins with 15.77 GB, as it required more than 386 GB of RAM.
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Experiments (SA and LCP)

Peakspace:

I gSACA-K+LCP: 9N + O(1) bytes when N < 231 and 17N + O(1) bytes otherwise.

I gSACA-K combined with Φ: 13N bytes when N < 231 and 25N bytes otherwise.
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Experiments (SA and LCP)

Workspace:

I gSACA-K+LCP: 10 KB when N < 231 and 20 KB otherwise.

I gSAIS+LCP is O(N), whereas gSAIS and gSACA-K combined with Φ are dominated by the workspace
of Φ, which uses an additional integer array of size N.
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Experiments (SA and DA)

Time:

I gSACA-K+DA and gSACA-K combined with bit were the fastest algorithms.

I The time added by computing the document array in gSACA-K+DA was 8.3% on the average?.
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?Easier problem: this time is smaller than the overhead added by the LCP array construction in gSACA-K+LCP.
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Experiments (SA and DA)

Peakspace:

I gSACA-K+DA: 9N + O(1) bytes when N < 231 and 17N + O(1) bytes otherwise.

I gSACA-K combined with bit: 9N bytes + O(N) bits required by bit to solve the rank queries.
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Experiments (SA and DA)

Workspace:
I gSACA-K+DA: 1 KB when N < 231 and 2 KB otherwise.
I gSAIS+DA is O(N), whereas the combined algorithms are dominated by bit and bit sd.
I gSACA-K combined with bit: N + o(N) bits?.
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?N bits to store the bitvector B[1,N] + o(N) bits for the rank data structure.
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Chapter 5
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Conclusions and future works

Our contributions:

1. BWT in-place and LCP array in O(n2)-time using O(1)-worskpace for unbounded alphabets.

I Future work: Investigate if it is possible to compute BWT and LCP compressed in only 2n + o(n)

bits, in quadratic or even o(n2) time.

2. SA and LCP array in O(n)-time using O(σ log n) bits of worskpace, which is optimal for
alphabets of constant size σ = O(1).

I Future work: Investigate whether the recent linear non-recursive SACA [Bai16] can also be adapted
to compute the LCP array.

3. Augmented suffix sorting algorithms for string collections in optimal time and space for
strings from constant alphabets.

I Future work: modify algorithms for single strings to handle string collections (e.g.
[BFO16, NCHW15, LNCW15, KKPZ17, OS09, GB14]).
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