External Memory Generalized Suffix
and LCP Arrays Construction

Felipe A. Louza' Guilherme P. Telles?> Cristina D. A. Ciferrit

nstitute of Mathematics and Computer Science
University of Sdo Paulo, SP, Brazil

2|nstitute of Computing
University of Campinas, SP, Brazil

CPM 2013
Bad Herrenalb, Germany

TSR QL@- R FAPESP

UNICAMP

Introduction

Suffix and LCP arrays

» Provide an efficent data structure to solve many string problems

» Several algorithms have been proposed to construct suffix and LCP arrays in
external memory e.g. [Ferragina et al., 2012, Bingmann et al., 2013]

These algorithms are aimed to index single strings

Felipe A. Louza (USP) Ext. Mem. Gen. Suffix an LCP Arrays Construction CPM 2013 Bad Herrenalb, Germany 2/24

Introduction

Suffix and LCP arrays

» Provide an efficent data structure to solve many string problems

» Several algorithms have been proposed to construct suffix and LCP arrays in
external memory e.g. [Ferragina et al., 2012, Bingmann et al., 2013]

Indexing string sets

» To use those algorithms it would be necessary to concatenate all strings into
asingle one 7 = T1$1 T5%5 ... Ti$x with different end-markers $;

This approach limits the number indexed strings
For example, using 1 byte for each character, k is limited by 256 — |X|

Felipe A. Louza (USP) Ext. Mem. Gen. Suffix an LCP Arrays Construction CPM 2013 Bad Herrenalb, Germany 2/24

Introduction

Suffix and LCP arrays

» Provide an efficent data structure to solve many string problems

» Several algorithms have been proposed to construct suffix and LCP arrays in
external memory e.g. [Ferragina et al., 2012, Bingmann et al., 2013]

Indexing string sets

» To use those algorithms it would be necessary to concatenate all strings into
asingle one 7 = T1$1 T5%5 ... Ti$x with different end-markers $;

» BWT and LCP array for string sets in external memory [Bauer et al., 2012]

This algorithm aims at indexing large sets of small strings with fixed size
It is common in NGS data

Felipe A. Louza (USP) Ext. Mem. Gen. Suffix an LCP Arrays Construction CPM 2013 Bad Herrenalb, Germany 2/24

Introduction

Suffix and LCP arrays

» Provide an efficent data structure to solve many string problems

» Several algorithms have been proposed to construct suffix and LCP arrays in
external memory e.g. [Ferragina et al., 2012, Bingmann et al., 2013]

Indexing string sets

» To use those algorithms it would be necessary to concatenate all strings into
asingle one 7 = T1$1 T5%5 ... Ti$x with different end-markers $;
» BWT and LCP array for string sets in external memory [Bauer et al., 2012]

> Generalized suffix and LCP arrays for sets of large strings (e.g. genomic data)

Contribution

We introduce eGSA, an external memory algorithm to construct both generalized
suffix and LCP arrays

Felipe A. Louza (USP) Ext. Mem. Gen. Suffix an LCP Arrays Construction CPM 2013 Bad Herrenalb, Germany 2/24

Introduction

Let T=T[1]T[2]... T[n—1] $ be a string of length n, T[] € X and $ ¢ &
> T[i,j]=TI[...T}], 1 <i<j<nisasubstring of T
> A suffix of T is a substring T[k,]

> a-suffix: a suffix starting with o € &

Felipe A. Louza (USP) Ext. Mem. Gen. Suffix an LCP Arrays Construction CPM 2013 Bad Herrenalb, Germany 3/24

Introduction

Let T=T[1]T[2]... T[n—1] $ be a string of length n, T[] € X and $ ¢ &
> T[i,jl=T[i]... T[]l 1 <i<j < nisa substring of T
> A suffix of T is a substring Tk, n]

> a-suffix: a suffix starting with o € &

Generalized Suffix Array (GSA) and LCP Array

> Let 7 ={T1,..., Tx} be a set of k strings of lengths ny,..., ng

> The GSA of T is an array of integers (i,) that specifies the order of all
suffixes T;[J, ni]

An additional order relation is defined for the tail suffixes T;[n;, n;] = $ as
T,-[n,-, n,-] < Tj[nj,nj] if i <j

Felipe A. Louza (USP) Ext. Mem. Gen. Suffix an LCP Arrays Construction CPM 2013 Bad Herrenalb, Germany 3/24

Introduction

Let T=T[1]T[2]... T[n—1] $ be a string of length n, T[] € X and $ ¢ &
> T[i,jl=T[i]... T[]l 1 <i<j < nisa substring of T
> A suffix of T is a substring Tk, n]

> a-suffix: a suffix starting with o € &

Generalized Suffix Array (GSA) and LCP Array

> Let 7 ={T1,..., Tx} be a set of k strings of lengths ny,..., ng

> The GSA of T is an array of integers (i,) that specifies the order of all
suffixes T;[J, ni]

An additional order relation is defined for the tail suffixes T;[n;, n;] = $ as
T,-[n,-, n,-] < Tj[nj,nj] if i <j

» The LCP array of 7T is an array containing the length of the longest common
prefix (lcp) of every pair of consecutive suffixes in GSA, and LCP[1] =0

Felipe A. Louza (USP) Ext. Mem. Gen. Suffix an LCP Arrays Construction CPM 2013 Bad Herrenalb, Germany 3/24

eGSA

eGSA: External Memory Generalized Suffix and LCP Arrays Construction
Algorithm

> Based on the 2PMMS [Garcia-Molina et al., 1999]
> Input: a set of k strings T = {T1,..., Tk} with lengths n;, ... ng
» Output: generalized suffix and Icp array for T

In a glance, eGSA works as follows:

» Phase 1: For each T; € T, internal memory sorting — SA;, LCP;, and write
them in external memory

» Phase 2: Merge the previous computed arrays obtaining GSA and LCP

Felipe A. Louza (USP) Ext. Mem. Gen. Suffix an LCP Arrays Construction CPM 2013 Bad Herrenalb, Germany 4 /24

Phase 1: Sorting

For each T; € T~

1. Construct SA; and LCP; using any internal memory algorithm
e.g. [Fischer, 2011]

In the case that there is no enough internal memory we can use an external
memory algorithm e.g. [Bingmann et al., 2013]

Felipe A. Louza (USP) Ext. Mem. Gen. Suffix an LCP Arrays Construction CPM 2013 Bad Herrenalb, Germany 5 /24

Phase 1: Sorting

For each T; € T~

1. Construct SA; and LCP; using any internal memory algorithm
e.g. [Fischer, 2011]

2. Compute two auxiliary arrays

Auxiliary arrays:
> BWT;[i] = T[SAi[i] — 1] if SAi[i] # 1 or BWT;[i] = $ otherwise
> PRE;[i] stores the the prefix of T[SA;[i] — 1]

Felipe A. Louza (USP) Ext. Mem. Gen. Suffix an LCP Arrays Construction CPM 2013 Bad Herrenalb, Germany 5 /24

Phase 1: Sorting

For each T; € T~

1. Construct SA; and LCP; using any internal memory algorithm
e.g. [Fischer, 2011]

2. Compute two auxiliary arrays

3. Write these arrays in external memory

Auxiliary arrays:
> BWT;[i] = T[SAi[i] — 1] if SAi[i] # 1 or BWT;[i] = $ otherwise
> PRE;[i] stores the the prefix of T[SA;[i] — 1]

Felipe A. Louza (USP) Ext. Mem. Gen. Suffix an LCP Arrays Construction CPM 2013 Bad Herrenalb, Germany 5 /24

Phase 1: Sorting

Prefix Array of T;, (PRE;):
» PRE; contains the prefixes (of length p) of the suffixes in SA;
> PRE;[j] = Ti[SAi[j], SAi[j] + p] [Barsky et al., 2008]

Figure: Example for T1 = GATAGA$

1 6 0 $$ $

2| s 0 A$ A$

3 3 1 AG AGA$

4 1 1 AT ATAGAS
5 4 0 GA GAS

6 0 2 GA GATAGAS
7] 2 0 TA TAGA$

The probability that PRE;[j] has the same information of PRE;[j + 1] is large,
since the suffixes are sorted in SA;

Felipe A. Louza (USP) Ext. Mem. Gen. Suffix an LCP Arrays Construction CPM 2013 Bad Herrenalb, Germany 6 /24

Phase 1: Sorting

Prefix Array of T;, (PRE;):
» PRE; contains the prefixes (of length p) of the suffixes in SA;
> PRE;[j] = T:[SAi[j]. SAi[j] + p] [Barsky et al., 2008]

> PRE,[]] = T,[SA,[]] + hj, SA,[]] + hj + p], where hj = mm(LCP,L/], hj_l + p)
and hy = 0.

Figure: Example for T; = GATAGA$

J | SAl] LCP[j] PRE 1 [j] T1[SA[], m]
1 6 0 $$ $

2 5 0 A$ A%

3 3 1 GA AGAS

4 1 1 TA ATAGAS

5 4 0 GA GAS$

6 0 2 TA GATAGAS
7 2 0 TA TAGAS$

We can use the LCP array to compute PRE; with non-overlapping strings
[Sinha et al., 2008]

Felipe A. Louza (USP) Ext. Mem. Gen. Suffix an LCP Arrays Construction CPM 2013 Bad Herrenalb, Germany 6 /24

Phase 2: Merging

Merge the previous computed Suffix and LCP Arrays using:

Felipe A. Louza (USP) Ext. Mem. Gen. Suffix an LCP Arrays Construction CPM 2013 Bad Herrenalb, Germany 7/24

Phase 2: Merging

Merge the previous computed Suffix and LCP Arrays using:

» Foreach T; € T:

» Partition buffer B;, which contains blocks of (SA;, LCP;, BWT;, PRE;)
> String buffer S;, containing a substring of the suffixes of T;

. T

A - il
SA1 LCPy, BWTy, PRE; |

=
|
; ST

L1
LT
|
!

Felipe A. Louza (USP) Ext. Mem. Gen. Suffix an LCP Arrays Construction CPM 2013 Bad Herrenalb, Germany 7/ 24

Phase 2: Merging

Merge the previous computed Suffix and LCP Arrays using:

» Foreach T; € T:

» Partition buffer B;, which contains blocks of (SA;, LCP;, BWT;, PRE;)
> String buffer S;, containing a substring of the suffixes of T;

> Internal heap, each node represents heading elements (suffixes) of each B;

Felipe A. Louza (USP) Ext. Mem. Gen. Suffix an LCP Arrays Construction CPM 2013 Bad Herrenalb, Germany 7/24

Phase 2: Merging

Merge the previous computed Suffix and LCP Arrays using:

» Foreach T; € T:

» Partition buffer B;, which contains blocks of (SA;, LCP;, BWT;, PRE;)
> String buffer S;, containing a substring of the suffixes of T;

> Internal heap, each node represents heading elements (suffixes) of each B;
» Output buffer - GSA and LCP

A B0

buffer

When the output buffer is full, it is written to external memory

Felipe A. Louza (USP) Ext. Mem. Gen. Suffix an LCP Arrays Construction CPM 2013 Bad Herrenalb, Germany 7/24

Phase 2: Merging

The most sensitive operation is the comparison of elements from each buffer

Naive approach:
» for each comparison we load into S; the top suffix of B;

» |t may require too many random disk accesses

S N = =
B ¥l
&[I;ID S«l:l;D

v

Felipe A. Louza (USP) Ext. Mem. Gen. Suffix an LCP Arrays Construction CPM 2013 Bad Herrenalb, Germany 8 /24

Phase 2: Merging

The most sensitive operation is the comparison of elements from each buffer

Naive approach:
» for each comparison we load into S; the top suffix of B;

» |t may require too many random disk accesses

S e Y - =
-H| ¥l
sl[I}ID &[ED
v

Enhanced comparison method:

To reduce disk accesses, we propose three strategies: (i) prefix assembling; (ii) lcp
comparisons; and (iii) inducing suffixes

Felipe A. Louza (USP) Ext. Mem. Gen. Suffix an LCP Arrays Construction CPM 2013 Bad Herrenalb, Germany 8 /24

Phase 2: Merging

(i) Prefix assembling

> PRE; is used to load the initial prefix of T;[SA;[j], ni] into S;

Example:
j=5 hs=0
S; = GA#

Felipe A. Louza (USP)

SAL[]

LCP,[j] | BWT;

0 A

PRE[j]

GA

5 [GTAT#]

T1 [SA[/], n1]

GA$

Ext. Mem. Gen. Suffix an LCP Arrays Construction CPM 2013 Bad Herrenalb, Germany 9 /24

Phase 2: Merging

(i) Prefix assembling

» PRE; is used to load the initial prefix of T;[SA;[j], ni] into S;
» Using LCP; and PRE; we can concatenate (-) previous PRE;[K]

> Si[1,hj+ p+1] = Si[1, h] - PRE;[j] - #
» hj = min(LCP;[j], hi—1 + p), ho =0

j [SALI] LCPiT [BWT; | PREL[]
5| 4 0 A | oA
6| o0 2 s | T

Example:

S G[AJT[AT#]

T1[SA[j], m]
GA$
GATA

J =6, he = min(LCP;[6], hs + p) = min(2,0 + 2) = 2
Si = Si[1,2]- PRE1[5]- # = GA- TA- #

Felipe A. Louza (USP) Ext. Mem. Gen. Suffix an LCP Arrays Construction CPM 2013 Bad Herrenalb, Germany 9 /24

Phase 2: Merging

(i) Prefix assembling

» PRE; is used to load the initial prefix of T;[SA;[j], ni] into S;
» Using LCP; and PRE; we can concatenate (-) previous PRE;[K]

> Si[1,hj+ p+1] = Si[1, h] - PRE;[j] - #
» hj = min(LCP;[j], hi—1 + p), ho =0

j [SALI] LCPiT [BWT; | PREL[]
5| 4 0 A | oA
6| o0 2 s | T

Example:

S G[AJT[AT#]

T1[SA[j], m]
GA$
GATA

J =6, he = min(LCP;[6], hs + p) = min(2,0 + 2) = 2
Si = Si[1,2]- PRE1[5]- # = GA- TA- #

I/O operations — only if the string comparison reachs #

Felipe A. Louza (USP) Ext. Mem. Gen. Suffix an LCP Arrays Construction CPM 2013 Bad Herrenalb, Germany 9 /24

Phase 2: Merging
(ii) LCP comparisons

» The Icp values can be used to speed up suffix comparisons in the heap

Felipe A. Louza (USP) | =Y BN BRI P EE N M SV EVER @ BT CPM 2013 Bad Herrenalb, Germany 10 / 24

Phase 2: Merging
(ii) LCP comparisons

» The Icp values can be used to speed up suffix comparisons in the heap

Lemma 1:
Let 51 < S, and S; < S«
> Icp(S1,S2) > lep(St1, Sk) <= Sz < Sk

Felipe A. Louza (USP) | =Y BN BRI PEET N M SV EVER @ BT CPM 2013 Bad Herrenalb, Germany 10 / 24

Phase 2: Merging
(ii) LCP comparisons

» The Icp values can be used to speed up suffix comparisons in the heap

Lemma 1:

Let S; < S5 and S; < Sk
> Icp(S1,S2) > lep(St1, Sk) <= Sz < Sk
> Icp(S1, S2) < lep(St1, Sk) <= S > Sk

ili):

Felipe A. Louza (USP) | =Y BN RS PEET N M SV EVER @ BT CPM 2013 Bad Herrenalb, Germany 10 / 24

Phase 2: Merging
(ii) LCP comparisons

» The lcp values can be used to speed up suffix comparisons in the heap

Lemma 1:
Let $; < S and S; < Sk
> Icp(S1,S2) > lep(St1, Sk) <= Sz < Sk
> Icp(S1, S2) < lep(St1, Sk) <= S > Sk
> lcp(S1, S2) = lep(St, Sk) = | then lep(Sa, Sk) >/

Iep

We can compare S,, Si from /

Felipe A. Louza (USP) SRS R e NV e e s CPM 2013 Bad Herrenalb, Germany 10 / 24

Phase 2: Merging
(ii) LCP comparisons
Let A, B and C be nodes in the heap storing By[i], Bz[j] and Bx[k]

T T2 Tk
I R s
51<Sz Icp Icp
S <&
Icp
heap

Felipe A. Louza (USP) | =Y BN BRI PEET N M SV EVER @ BT CPM 2013 Bad Herrenalb, Germany 11 /24

Phase 2: Merging
(ii) LCP comparisons
Let A, B and C be nodes in the heap storing By[i], Bz[j] and Bx[k]

> As A is removed from the heap, B;[i] is moved to the output buffer

T T2 Tk
sL [T =[[-1] s -1
<5 iep /< lep
lep
heap

Felipe A. Louza (USP) | =Y BN BRI PEET N M ST EVER @ BT CPM 2013 Bad Herrenalb, Germany 11 /24

Phase 2: Merging
(ii) LCP comparisons
Let A, B and C be nodes in the heap storing By[i], Bz[j] and Bx[k]

> As A is removed from the heap, B;[i] is moved to the output buffer
> Ais replaced by another node D storing Bi[i + 1].

Felipe A. Louza (USP) | =Y BN BRI PEET N M ST EVER @ BT CPM 2013 Bad Herrenalb, Germany 11 /24

Phase 2: Merging
(ii) LCP comparisons
Let A, B and C be nodes in the heap storing By[i], Bz[j] and Bx[k]
> As A is removed from the heap, B;[i] is moved to the output buffer
> Ais replaced by another node D storing Bi[i + 1].
> The order of D with respect to its children can be determined by Lemma 1

Felipe A. Louza (USP) SRS R e sV e e s CPM 2013 Bad Herrenalb, Germany 11 /24

Phase 2: Merging
(ii) LCP comparisons
Let A, B and C be nodes in the heap storing By[i], Bz[j] and Bx[k]
> As A is removed from the heap, B;[i] is moved to the output buffer
> Ais replaced by another node D storing Bi[i + 1].
> The order of D with respect to its children can be determined by Lemma 1

Example:

If Iep(A, D) > lep(A, B) and lep(A, D) > Icp(A, C) then D < Band D < C, D is
the next to be removed without string comparisons

Felipe A. Louza (USP) SRS R e sV e e s CPM 2013 Bad Herrenalb, Germany 11 /24

Phase 2: Merging
(iii) Inducing Suffixes

» We can determine the order of unsorted suffixes from already sorted suffixes

It is used by many suffix sorting algorithms

Felipe A. Louza (USP) | =Y BN BRI PEE N M SV EVER @ BT CPM 2013 Bad Herrenalb, Germany 12 /24

Phase 2: Merging
(iii) Inducing Suffixes

» We can determine the order of unsorted suffixes from already sorted suffixes

Lemma 2:
Let Suff be the set of all suffixes of T

> If T;[j,n] = - T;[j + 1, nj] is the lowest element of Suff
> then T;[j — 1,n;] = 5 T;[j, n;] is the lowest S-suffix of Suff \ {T;[j, ni]}

Felipe A. Louza (USP) =S R e NV e s CPM 2013 Bad Herrenalb, Germany 12 /24

Phase 2: Merging
(iii) Inducing Suffixes

» We can determine the order of unsorted suffixes from already sorted suffixes

Lemma 2:
Let Suff be the set of all suffixes of T
> If Ti[j,n] = a- T;[j + 1, nj] is the lowest element of Suff
> then T;[j — 1,n;] = 8- Ti[j, ni] is the lowest S-suffix of Suff\ { T;[j, ni]}

Induce:
» Remove T;[j,nj] = - T;[j + 1, n;] from Suff
> Induce T;[j —1,n;] = 8- T;[j, n;] to the first available position in the S-bucket
> [-bucket: a partition of SA that contains only S-suffixes

Note that if o > f the suffix T;[j — 1, n;] = - T;[j, ni] was already sorted

Felipe A. Louza (USP) =S e NV el e s CPM 2013 Bad Herrenalb, Germany 12 /24

Phase 2: Merging
(iii) Inducing Suffixes

Using Lemma 2 to induce suffixes in the merge algorithm:

Felipe A. Louza (USP) | =Y BN BRI PEET N M SV EVER @ BT CPM 2013 Bad Herrenalb, Germany 13 /24

Phase 2: Merging
(iii) Inducing Suffixes

Using Lemma 2 to induce suffixes in the merge algorithm:

> Suff is the set of all unsorted suffixes of T (remaining in B;)

m T, - T
m - =
sC [T] [1T-T1] sC 1]
heap

Felipe A. Louza (USP) | =Y BN BRI PEET N M SV EVER @ BT CPM 2013 Bad Herrenalb, Germany 13 /24

Phase 2: Merging
(iii) Inducing Suffixes
Using Lemma 2 to induce suffixes in the merge algorithm:

> Suff is the set of all unsorted suffixes of T (remaining in B;)
> Find the lowest suffix T1[j,] = - T;[j + 1, n;] — output buffer

T T2 . T

I T

sC T 1 s[1T-1T7] sCI-T]

o Tl

) ==
R ou
os 00
output
heap s

Felipe A. Louza (USP) | =Y BN BRI P EET N M SV EVER @ BT CPM 2013 Bad Herrenalb, Germany 13 /24

Phase 2: Merging

(iii) Inducing Suffixes

Using Lemma 2 to induce suffixes in the merge algorithm:
> Suff is the set of all unsorted suffixes of T (remaining in B;)
> Find the lowest suffix T1[j,] = - T;[j + 1, n;] — output buffer
> Induce T;[j — 1,n] = 8- T;j, ni] if & < B (using BWT;[j])

T T2 Tk
- - -
sC T 1 s[1T-1T7] sCI-T]
Talj-Lng] -
-)
—— - induce
@ b H ‘ D H”__’ @
i output
e heap bufter

Felipe A. Louza (USP) | =Y BN BRI PEET N M ST EVER @ BT CPM 2013 Bad Herrenalb, Germany 13 /24

Phase 2: Merging

(iii) Inducing Suffixes

Using Lemma 2 to induce suffixes in the merge algorithm:
> Suff is the set of all unsorted suffixes of T (remaining in B;)
> Find the lowest suffix T1[j,] = - T;[j + 1, n;] — output buffer
> Induce T;[j — 1,n] = 8- T;j, ni] if & < B (using BWT;[j])

> When the first S-suffix T;[j — 1, n;] is the lowest in the heap, 8-bucket is read
from external memory, and induces other suffixes as necessary

sC T 1 s[1T-1T7] sCI-T]
e () e
______ - o
=] H ’ ' " H 8
N -—»
- y il
= output
e heap buffer

We do not need to compare the induced suffixes
Follow the order in the 5-bucket removing elements from B;

Felipe A. Louza (USP) =S R e NV el e s CPM 2013 Bad Herrenalb, Germany 13 /24

Phase 2: Merging
(iii) Inducing Suffixes

The LCP values of the induced suffixes must also be induced, since they are not
calculated when the induced suffixes are not compared in the heap

Felipe A. Louza (USP) | =Y BN BRI P EET N M SV EVER @ BT CPM 2013 Bad Herrenalb, Germany 14 / 24

Phase 2: Merging
(iii) Inducing Suffixes

The LCP values of the induced suffixes must also be induced, since they are not
calculated when the induced suffixes are not compared in the heap

> Let T,[i, n,] be a suffix that induces an a-suffix and let Tp[j, np] be the suffix
that induces the following a-suffix

> LCP(T,[i — 1, na], Tolj — 1, np]) = LCP(T.[i, na), Tulj, np]) + 1.

Tali, nal ~-<

Toljngl - \

Tali-lng] 4=/
Toli-L]

Felipe A. Louza (USP) =S R e NV el e s CPM 2013 Bad Herrenalb, Germany 14 / 24

Phase 2: Merging
(iii) Inducing Suffixes

The LCP values of the induced suffixes must also be induced, since they are not
calculated when the induced suffixes are not compared in the heap

> Let T,[i, n,] be a suffix that induces an a-suffix and let Tp[j, np] be the suffix
that induces the following a-suffix

> LCP(T,[i — 1, na], Tolj — 1, np]) = LCP(T.[i, na), Tulj, np]) + 1.

Tali, nal ~<
Iep(Tali, nal , To[j, no]) -
Tolj.nol - !

Tali-lng =/

lep(Ta [i-1, ,Tolis 1 . -
(Tali-lnd Toliml)+1 <

Range minimum query on LCP:
> rmq(i, j) = min;<k<;{LCP[K]}
() 0) Bzl @y | L) 2

Phase 2: Merging
(iii) Inducing Suffixes

The LCP values of the induced suffixes must also be induced, since they are not
calculated when the induced suffixes are not compared in the heap

> Let T,[i, n,] be a suffix that induces an a-suffix and let Tp[j, np] be the suffix
that induces the following a-suffix

> LCP(T,[i — 1, na], Tolj — 1, np]) = LCP(T.[i, na), Tulj, np]) + 1.
(Tl Toli,) Tallrd ol

Tolisnel -

rmg(x+ 1,y) y

Tali-lng =/
Toli-Ln]

mg(x+ 1,y)+1

Range minimum query on LCP:
> LCP(T,[j, nal, Tolj, nb]) = rmq(x + 1, y)

Felipe A. Louza (USP) SRS e NV el e s CPM 2013 Bad Herrenalb, Germany 14 / 24

Phase 2: Merging
(iii) Inducing Suffixes

The LCP values of the induced suffixes must also be induced, since they are not
calculated when the induced suffixes are not compared in the heap

> Let T,[i, n,] be a suffix that induces an a-suffix and let Tp[j, np] be the suffix
that induces the following a-suffix

> LCP(T,[i — 1, na], Tolj — 1, np]) = LCP(T.[i, na), Tulj, np]) + 1.

mn=r
} } X (" Tali,n -~ =
1ep(Ta [i, nal , T [j, o]) alind ~F «p . om
- . | ity min [T T
rmg(x + 1,y) YU Tpliml < v update
e ./\."\.‘ abucket

Tali-lng =/

rmg(x+ 1,y) +1 . -
To[i-1np] <& lep=r+1

The rmq values are computed storing the min function for each o € ¥ as the GSA
and LCP are outputed

Felipe A. Louza (USP) =S R e eV e e s CPM 2013 Bad Herrenalb, Germany 14 / 24

Phase 2: Merging
(iii) Inducing Suffixes

The LCP values of the induced suffixes must also be induced, since they are not
calculated when the induced suffixes are not compared in the heap

> Let T,[i, n,] be a suffix that induces an a-suffix and let Tp[j, np] be the suffix
that induces the following a-suffix

> LCP(T,[i — 1, na], Tolj — 1, np]) = LCP(T.[i, na), Tulj, np]) + 1.

Iep(Ta i nal , To [§, ol)

rmg(x+ 1,y)

rmg(x+ 1,y)+1

Tali,na -~ mg; r
o N « B 2]
_ |y min [T 1]
Tolivmel -~ | v update
...................................... % ook

Tali-lng =/
To[j-1, np) - '/Icp= r+1

When an a-suffix is induced, min[a] < oo, and min[a] is computed until the next

a-suffix is induced

Felipe A. Louza (USP) SRS R e eV el e s CPM 2013 Bad Herrenalb, Germany

14 / 24

Performance Evaluation

The performance of eGSA was analyzed through tests with DNA sequences from
the genomes:

» (1) Human, (2) Medaka, (3) Zebrafish, (4) Cow, (5) Mouse and (6) Chicken,
which were obtained from the Ensembl genome database!

Thttp://www.ensembl.org/
Felipe A. Louza (USP) SRS R e e Ve e s CPM 2013 Bad Herrenalb, Germany 15 / 24

Performance Evaluation

The performance of eGSA was analyzed through tests with DNA sequences from
the genomes:

> (1) Human, (2) Medaka, (3) Zebrafish, (4) Cow, (5) Mouse and (6) Chicken,
which were obtained from the Ensembl genome database!

Datasets:

Dataset Genomes Number of strings mean LCP max. LCP Input size (GB)

1 2 24 19 2,573 0.54
2 6 30 17 5,476 0.92
3 3,6 56 58 71,314 2.18
4 2,3 4 80 44 71,314 4.26
5 1,4,56 105 59 168,246 8.50

The mean and max. LCP values provide an approximation of sorting difficulty
Each character in a dataset uses one byte

Thttp://www.ensembl.org/
Felipe A. Louza (USP) SRS R e e Ve e s CPM 2013 Bad Herrenalb, Germany 15 / 24

Performance Evaluation

eGSA was implemented in ANSI/C

» Phase 1: inducing+sais-lite algorithm [Fischer, 2011] was used to compute
SA,' and LCP,

» Phase 2: The buffers S;, B;, output and induced were set to use 200 KB, 10
MB, 64 MB and 16 MB of internal memory, respectively

The source code is freely available from http://code.google.com/p/egsa/

Felipe A. Louza (USP) SRS R e N Vel e s CPM 2013 Bad Herrenalb, Germany 16 / 24

http://code.google.com/p/egsa/

Performance Evaluation

eGSA was implemented in ANSI/C

» Phase 1: inducing+sais-lite algorithm [Fischer, 2011] was used to compute
SA,‘ and LCP,

» Phase 2: The buffers S;, B;, output and induced were set to use 200 KB, 10
MB, 64 MB and 16 MB of internal memory, respectively

The source code is freely available from http://code.google.com/p/egsa/

Comparison with eSAIS algorithm [Bingmann et al., 2013]:

> eSAIS is the fastest algorithm to date that computes both suffix and LCP
arrays in external memory for a single string

» To index a set of strings, we concatenated all strings in T into a single one
T =T1$1T2%... Ty$k, such that $; < $; if i < jand $; < a for each a € &

The amount of internal memory was restricted to 4 GB for both algorithms

Felipe A. Louza (USP) SRS R e N Vel e s CPM 2013 Bad Herrenalb, Germany 16 / 24

http://code.google.com/p/egsa/

Performance Evaluation

Experimental results of eGSA and eSAIS execution:

Dataset us/input byte | wallclock (sec) | cputime (sec) efficiency | cputime ratio
eSAIS eGSA | eSAIS eGSA | eSAIS eGSA | eSAIS eGSA | eSAIS/eGSA

1 5.86 1.72 | 3,413 1,005 | 1,236 687 0.36 0.68 1.80

2 5.97 1.24 | 5,883 1,228 | 2,110 715 0.36 0.58 2.95

3 6.23 2.27 | 14,596 5,314 | 4,385 3,349 | 0.30 0.63 1.31

4 6.41 2.31 | 29,383 10,590 | 8,542 7,566 | 0.29 0.71 1.13

5 7.24 2.79 | 66,106 25,502 | 16,652 13,003 | 0.25 0.51 1.28

Running time in microseconds per input byte
Efficiency is the proportion of cputime by wallclock

Felipe A. Louza (USP) SRS e NV el e s CPM 2013 Bad Herrenalb, Germany

17 / 24

Performance Evaluation

Experimental results of eGSA and eSAIS execution:

Dataset us/input byte | wallclock (sec) | cputime (sec) efficiency | cputime ratio
eSAIS eGSA | eSAIS eGSA | eSAIS eGSA | eSAIS eGSA | eSAIS/eGSA

1 5.86 1.72 | 3,413 1,005 | 1,236 687 0.36 0.68 1.80

2 5.97 1.24 | 5,883 1,228 | 2,110 715 0.36 0.58 2.95

3 6.23 2.27 | 14,596 5,314 | 4,385 3,349 | 0.30 0.63 1.31

4 6.41 2.31 | 29,383 10,590 | 8,542 7,566 | 0.29 0.71 1.13

5 7.24 2.79 | 66,106 25,502 | 16,652 13,003 | 0.25 0.51 1.28

> eGSA have outperformed eSAIS by a factor of 2.5—4.8 in time (columns

ps/input byte)

Although the comparison is not totally fair because eSAIS was not designed for

multiple strings

Felipe A. Louza (USP) SRS e NV el e s CPM 2013 Bad Herrenalb, Germany

17 / 24

Performance Evaluation

Experimental results of eGSA and eSAIS execution:

Dataset us/input byte | wallclock (sec) | cputime (sec) efficiency | cputime ratio
eSAIS eGSA | eSAIS eGSA | eSAIS eGSA | eSAIS eGSA | eSAIS/eGSA

1 5.86 1.72 | 3,413 1,005 | 1,236 687 0.36 0.68 1.80

2 5.97 1.24 | 5,883 1,228 | 2,110 715 0.36 0.58 2.95

3 6.23 2.27 | 14,596 5,314 | 4,385 3,349 | 0.30 0.63 1.31

4 6.41 2.31 29,383 10,590 | 8,542 7,566 | 0.29 0.71 1.13

5 7.24 2.79 | 66,106 25,502 | 16,652 13,003 | 0.25 0.51 1.28

> eGSA have outperformed eSAIS by a factor of 2.5—4.8 in time (columns
ps/input byte)

» Then we may conclude that eGSA is an efficient algorithm for generalized
suffix and LCP arrays construction on external memory

Although the comparison is not totally fair because eSAIS was not designed for
multiple strings

Felipe A. Louza (USP) SRS e NV el e s CPM 2013 Bad Herrenalb, Germany 17 / 24

Performance Evaluation

Experimental results of eGSA and eSAIS execution:

Dataset us/input byte | wallclock (sec) | cputime (sec) efficiency | cputime ratio
eSAIS eGSA | eSAIS eGSA | eSAIS eGSA | eSAIS eGSA | eSAIS/eGSA

1 5.86 1.72 | 3,413 1,005 | 1,236 687 0.36 0.68 1.80

2 5.97 1.24 | 5,883 1,228 | 2,110 715 0.36 0.58 2.95

3 6.23 2.27 | 14,596 5,314 | 4,385 3,349 | 0.30 0.63 1.31

4 6.41 2.31 29,383 10,590 | 8,542 7,566 | 0.29 0.71 1.13

5 7.24 2.79 | 66,106 25,502 | 16,652 13,003 | 0.25 0.51 1.28

> eGSA have outperformed eSAIS by a factor of 2.5—4.8 in time (columns
ps/input byte)

» Then we may conclude that eGSA is an efficient algorithm for generalized
suffix and LCP arrays construction on external memory

Phase 2 of eGSA used only 1.1 GB of internal memory for dataset 5
The proportion of induced suffixes is 37.4% on the average

Felipe A. Louza (USP) SRS e NV el e s CPM 2013 Bad Herrenalb, Germany 17 / 24

Conclusion

Our contribuition:

eGSA, the first external memory algorithm to construct both generalized suffix
and LCP arrays for sets of large strings

Felipe A. Louza (USP) | =Y BN RS PEET N M SV EVER @ BT CPM 2013 Bad Herrenalb, Germany 18 / 24

Conclusion

Our contribuition:

eGSA, the first external memory algorithm to construct both generalized suffix
and LCP arrays for sets of large strings

Ongoing work:

» Constructing a generalized Burrows-Wheeler transform of a set of strings

Felipe A. Louza (USP) =S R e NV el e s CPM 2013 Bad Herrenalb, Germany 18 / 24

Conclusion

Our contribuition:

eGSA, the first external memory algorithm to construct both generalized suffix
and LCP arrays for sets of large strings

Ongoing work:
» Constructing a generalized Burrows-Wheeler transform of a set of strings

» Considering multiple disks, one for write operations and the others for read
operations

Felipe A. Louza (USP) SRS R e eV el e s CPM 2013 Bad Herrenalb, Germany 18 / 24

Conclusion

Our contribuition:

eGSA, the first external memory algorithm to construct both generalized suffix
and LCP arrays for sets of large strings

Ongoing work:
» Constructing a generalized Burrows-Wheeler transform of a set of strings

» Considering multiple disks, one for write operations and the others for read
operations

> Indexing large sets of small strings (e.g. Next-Generation sequencing reads
and protein sequences datasets)

Felipe A. Louza (USP) SRS R e eV el e s CPM 2013 Bad Herrenalb, Germany 18 / 24

Final

Thank you for your attention!

Felipe A. Louza (USP) Ext. Mem. Gen. Suffix an LCP Arrays Construction

[Barsky, M., Stege, U., Thomo, A., and Upton, C. (2008).
A new method for indexing genomes using on-disk suffix trees.
Proc. CIKM, 236(1-2):649.

ﬁ Bauer, M. J., Cox, A. J., Rosone, G., and Sciortino, M. (2012).
Lightweight LCP Construction for Next-Generation Sequencing Datasets.
In Proc. WABI, pages 326-337.

ﬁ Bingmann, T., Fischer, J., and Osipov, V. (2013).
Inducing suffix and Icp arrays in external memory.
In Proc. ALENEX, pages 88—103.

ﬁ Crochemore, M., llie, L., lliopoulos, C. S., Kubica, M., Rytter, W., and
Walen, T. (2013).
Computing the longest previous factor.
European J. of Combinatorics, 34(1):15-26.

ﬁ Ferragina, P., Gagie, T., and Manzini, G. (2012).
Lightweight data indexing and compression in external memory.
Algorithmica, 63(3):707-730.

Felipe A. Louza (USP) | =Y BN BRI PEET N M SV EVER @ BT CPM 2013 Bad Herrenalb, Germany 20 /24

[Fischer, J. (2011).
Inducing the Icp-array.
In Proc. Algorithms and Data Structures Symp., pages 374-385.

ﬁ Garcia-Molina, H., Widom, J., and Ullman, J. D. (1999).
Database System Implementation.
Prentice-Hall, Inc., Upper Saddle River, NJ, USA.

[3 Puglisi, S. J., Smyth, W. F., and Turpin, A. H. (2007).
A taxonomy of suffix array construction algorithms.
ACM Computing Surveys, 39(2):1-31.
[@ Sinha, R., Puglisi, S. J., Moffat, A., and Turpin, A. (2008).

Improving suffix array locality for fast pattern matching on disk.
In Proc. ACM SIGMOD, pages 661-672.

Felipe A. Louza (USP) | =Y BN BRI PEET N M SV EVER @ BT CPM 2013 Bad Herrenalb, Germany 21 /24

Extra:
(iii) Inducing Suffixes

Lemma 2 can be used to sort the suffixes of T; as follows:

Felipe A. Louza (USP) Ext. Mem. Gen. Suffix an LCP Arrays Construction

Extra:
(iii) Inducing Suffixes
Lemma 2 can be used to sort the suffixes of T; as follows:

» Suff starts with all suffixes of T;

1 2 3 4 5 6
Ti=[r]alc]T]c]s]

Ti[16]
Ti[5.6] 7,[2,6]
Ti[3.6] T[6,6]
Ti[4,6]

Suff

Felipe A. Louza (USP) | =Y BN BRI PEET N M SV EVER @ BT CPM 2013 Bad Herrenalb, Germany 22 /24

Extra:
(iii) Inducing Suffixes
Lemma 2 can be used to sort the suffixes of T; as follows:

» Suff starts with all suffixes of T;
> Find the smallest suffix T;[j, n;] = o T;[j + 1, n;] and remove it from Suff

Ti[1 6]
5.6 T (2q
Ti[3.6] T[6,6]
Ti[4, 6]

/

Suff

Felipe A. Louza (USP) | =Y BN RS PEET N M SV EVER @ BT CPM 2013 Bad Herrenalb, Germany 22 /24

Extra:
(iii) Inducing Suffixes
Lemma 2 can be used to sort the suffixes of T; as follows:

» Suff starts with all suffixes of T;
> Find the smallest suffix T;[j, n;] = o T;[j + 1, n;] and remove it from Suff
> Induce T;[j —1,n;] = 8- T;[j, n;] to the first available position in the 8-bucket

1 2 3 4 5 6
Ti=[r]ale]T]c]s]

Ti[1 6]
Ti[4.6] 7,12, 6]
T [3,6]
Ti [5, 6]

Suff

We define B-bucket is a partition of SA that contains only suffixes starting with 3

Felipe A. Louza (USP) =S R e eV el e s CPM 2013 Bad Herrenalb, Germany 22 /24

Extra:
(iii) Inducing Suffixes
Lemma 2 can be used to sort the suffixes of T; as follows:

» Suff starts with all suffixes of T;
> Find the smallest suffix T;[j, n;] = o T;[j + 1, n;] and remove it from Suff
> Induce T;[j —1,n;] = 8- T;[j, n;] to the first available position in the 8-bucket

1 2 3 4 5 6
Ti=[r]ale]T]c]s]

Ti[1 6]
Ti[4.6] 7,12, 6]
T [3,6]
Ti [5, 6]

Suff

The induced suffixes T;[j — 1, nj] = - T;[j, n;] cannot be removed from Suff
because they must induce suffixes T;[j — 2, n;] as well

Felipe A. Louza (USP) SRS R e e Ve e s CPM 2013 Bad Herrenalb, Germany 22 /24

Extra:
(iii) Inducing Suffixes
Lemma 2 can be used to sort the suffixes of T; as follows:
» Suff starts with all suffixes of T;
> Find the smallest suffix T;[j, n;] = o T;[j + 1, n;] and remove it from Suff
> Induce T;[j —1,n;] = 8- T;[j, n;] to the first available position in the 8-bucket

TieE=s St

1 2 3 4 5 6
ne[alelrlels] _ rodth

- T[2,6] =AGTG$ Abucke

TLe e les o
Til48 72,6 '

Ti[3.6] e

Ti[5.6]
Suff

Felipe A. Louza (USP) | =Y BN BRI PEET N M SV EVER @ BT CPM 2013 Bad Herrenalb, Germany 22 /24

Extra:
(iii) Inducing Suffixes

Lemma 2 can be used to sort the suffixes of T; as follows:

» Suff starts with all suffixes of T;

> Find the smallest suffix T;[j, n;] = o T;[j + 1, n;] and remove it from Suff
> Induce T;[j —1,n;] = 8- T;[j, n;] to the first available position in the 8-bucket

1 2 3 4 5 6
Ti=[r]ale]T]c]s]

Suff

Ti [6, 6] $ $-bucket
Ti[2,6] = AGTG$ -Abucket
T, [5, 6] = G$ G-bucket-,

,, s

Ti[1 6] = TAGTG$ ke

Felipe A. Louza (USP) | =Y BN BRI PEET N M SV EVER @ BT CPM 2013 Bad Herrenalb, Germany 22 /24

Extra:

(iii) Inducing Suffixes

Lemma 2 can be used to sort the suffixes of T; as follows:
» Suff starts with all suffixes of T;

> Find the smallest suffix T;[j, n;] = o T;[j + 1, n;] and remove it from Suff
> Induce T;[j —1,n;] = 8- T;[j, n;] to the first available position in the 8-bucket

$ $-bucket

1 2 3 4 5 6 Tl [6, 6]
ne[lalelrlels] _ loat

Suff

When we reach the S-bucket, as the suffixes T;[j — 2, n;] are analyzed to be
induced, the suffixes T;[j — 1, n;] are removed from Suff

Felipe A. Louza (USP) SRS R e e Ve e s CPM 2013 Bad Herrenalb, Germany 22 /24

Extra:

(iii) Inducing Suffixes

Lemma 2 can be used to sort the suffixes of T; as follows:
» Suff starts with all suffixes of T;

> Find the smallest suffix T;[j, n;] = o T;[j + 1, n;] and remove it from Suff
> Induce T;[j —1,n;] = 8- T;[j, n;] to the first available position in the 8-bucket

Tiee=s St

1 2 3 4 5 6
ne[lalelrlels] _ loaT

]
Ti[1 6] = TAGTGS [
Suf Ti[4,6)=TGs 4

When we reach the S-bucket, as the suffixes T;[j — 2, n;] are analyzed to be
induced, the suffixes T;[j — 1, n;] are removed from Suff

Felipe A. Louza (USP) SRS R e e Ve e s CPM 2013 Bad Herrenalb, Germany 22 /24

Extra:
(iii) Inducing Suffixes
Lemma 2 can be used to sort the suffixes of T; as follows:

» Suff starts with all suffixes of T;
> Find the smallest suffix T;[j, n;] = o T;[j + 1, n;] and remove it from Suff
> Induce T;[j —1,n;] = 8- T;[j, n;] to the first available position in the 8-bucket

1 2 3 4 5 6 Ti[6.6] =$ $-bucket
Ti=[r]ale]r]cs] 26 S AGTGs Ak
CTi56=G8 G-bucket

> T[3,6]=GTGS

Ti[1,6] = TAGTGS ™
Suff Ti[4,6] =TG$

Felipe A. Louza (USP) | =Y BN BRI PEET N M SV EVER @ BT CPM 2013 Bad Herrenalb, Germany 22 /24

Extra:

(iii) Inducing Suffixes

Lemma 2 can be used to sort the suffixes of T; as follows:
» Suff starts with all suffixes of T;

> Find the smallest suffix T;[j, n;] = o T;[j + 1, n;] and remove it from Suff
> Induce T;[j —1,n;] = 8- T;[j, n;] to the first available position in the 8-bucket

1 2 3 4 5 6 Tj[66] $ $-bucket
(3 D 15 1 1 o o
[rTaTel v c]s] s oo
! Tse=cs Gt
\

~-_ T,[3,6] =GTG$

Ti[1,6] = TAGTGS "™k
Suff T [4, 6] =TG$

Note that if o > 8 the suffix T;[j — 1, n;] was already sorted

Felipe A. Louza (USP) SRS e NV e e s CPM 2013 Bad Herrenalb, Germany 22 /24

Extra:
(iii) Inducing Suffixes
Lemma 2 can be used to sort the suffixes of T; as follows:

» Suff starts with all suffixes of T;
> Find the smallest suffix T;[j, n;] = o T;[j + 1, n;] and remove it from Suff
> Induce T;[j —1,n;] = 8- T;[j, n;] to the first available position in the 8-bucket

L2 3 45 6 Ti[6,6] =$ Shucke
T = 26 S AGTGs Ak
CTi56=G8 G-bucket
Ti[3,6] = GTG$
Ti[16] = TAGTGS Tk
st T14,6] = TG$

Felipe A. Louza (USP) SRS R e NV e e s CPM 2013 Bad Herrenalb, Germany 22 /24

Extra:
(iii) Inducing Suffixes
Lemma 2 can be used to sort the suffixes of T; as follows:

» Suff starts with all suffixes of T;
> Find the smallest suffix T;[j, n;] = o T;[j + 1, n;] and remove it from Suff
> Induce T;[j —1,n;] = 8- T;[j, n;] to the first available position in the 8-bucket

1 2 3 4 5 6 Ti[6.6] =$ $-bucket
R T (2.6 <AcTes Ao
CTi56=G8 G-bucket
Ti[3,6] =GTG$
6= TAGTGs T
Suff Ti [4, 6] = TG$

Felipe A. Louza (USP) SRS R e NV e e s CPM 2013 Bad Herrenalb, Germany 22 /24

Extra:
(iii) Inducing Suffixes
Lemma 2 can be used to sort the suffixes of T; as follows:

» Suff starts with all suffixes of T;
> Find the smallest suffix T;[j, nj] = - T;[j + 1, n;] and remove it from Suff
> Induce T;[j —1,n;] = B T;[j, n] to the first available position in the 8-bucket

1 2 3 4 5 6
ne[laleltlels] e _
i il

T [5’ 6] =G$ G-bucket
Ti[3, 6] =GTG$
T 11 S TAGTes T
Suff Ti[4,6] = TG$

Problem:

However, this approach is not efficient to sort a single string T;, since it is always
necessary to find the smallest suffix T;[j, n;] in Suff

Felipe A. Louza (USP) =S R e NV e s CPM 2013 Bad Herrenalb, Germany 22 /24

Extra:
(iii) Inducing Suffixes
Lemma 2 can be used to sort the suffixes of T; as follows:

» Suff starts with all suffixes of T;
> Find the smallest suffix T;[j, nj] = o - T;[j + 1, n;] and remove it from Suff
> Induce T;[j —1,n;] = 8- T;[j, n;] to the first available position in the S-bucket

12 3 4 5 6
Ti=[r]ale]T][c]s]

Ti [5,6] = G$ G-bucket
Ti[3,6] = GTGS$
Ti[1,6] = TAGTG$ "o
Suft Ti [4,6] = TG$

Merging Sorting:
The smallest suffix is one of those nodes in the heap and can be determined
efficiently

Felipe A. Louza (USP) SRS R e eV e s CPM 2013 Bad Herrenalb, Germany 22 /24

Phase 2: Merging
(iii) Inducing Suffixes

Prefix assembling must consider the induced suffixes

Let two consecutive suffixes on SA;, SA;[j] = a and SA;[j +1] = b

SAT [LCPLT | BWT; | PREL[] | suffix

il oa 0 A | o |6c...

1] b 1 $ TA | GTA...
S [#[#[#[#]#]

Felipe A. Louza (USP) SRS R e NV el e s CPM 2013 Bad Herrenalb, Germany

23 /24

Phase 2: Merging
(iii) Inducing Suffixes

Prefix assembling must consider the induced suffixes

Let two consecutive suffixes on SA;, SA;[j] = a and SA;[j +1] = b

» If T;[a, n;] is induced

> Ti[a, ni] will be ignored in the heap comparisons (no assembling)

SA] [LCPT | BWT; | PREL[] | suffix

il oa 0 A | o |6c...

1] b 1 $ TA | GTA...
S [#[#[#[#]#]

Felipe A. Louza (USP) Ext. Mem. Gen. Suffix an LCP Arrays Construction | (@Il =E 1N 5[e [e e

23 /24

Phase 2: Merging
(iii) Inducing Suffixes

Prefix assembling must consider the induced suffixes

Let two consecutive suffixes on SA;, SA;[j] = a and SA;[j +1] = b

» If T;[a, n;] is induced

> Ti[a, ni] will be ignored in the heap comparisons (no assembling)
> Ti[b, nj] must start the assembling from the begining

SAL[] | LCPL[J]T | BWT; | PREL[j] | suffix

il oa 0 A G | 6c ...

j+1 b 1 $ TA GTA...
S [#[TJAT#]#] wrong

Felipe A. Louza (USP) Ext. Mem. Gen. Suffix an LCP Arrays Construction | (@Il =E 1N 5[E] [(e e

23 /24

Phase 2: Merging
(iii) Inducing Suffixes

Prefix assembling must consider the induced suffixes

Let two consecutive suffixes on SA;, SA;[j] = a and SA;[j +1] = b

» If T;[a, n;] is induced

> Ti[a, ni] will be ignored in the heap comparisons (no assembling)
> Ti[b, nj] must start the assembling from the begining

SALJ] | LCP[j] | BWT; | PREL[]]
i oa 0 A GC
j+1 b 0 $ GT

S #[#[#[#]#]

Solving:

suffix

GC ...
GTA...

» If a suffix will be induced (Tj[a] > Ti[a+1]) = LCP[j+1] =0

Felipe A. Louza (USP) Ext. Mem. Gen. Suffix an LCP Arrays Construction | (@Il =E 1N 5[el [(e e

23 /24

Phase 2: Merging
(iii) Inducing Suffixes

Prefix assembling must consider the induced suffixes

Let two consecutive suffixes on SA;, SA;[j] = a and SA;[j +1] = b

» If T;[a, n;] is induced

> Ti[a, ni] will be ignored in the heap comparisons (no assembling)
> Ti[b, nj] must start the assembling from the begining

SALJ] | LCP[j] | BWT; | PREL[]]
i oa 0 A GC
j+1 b 0 $ GT

S(C[T[#[#]#]

Solving:

suffix

GC ...
GTA...

» If a suffix will be induced (Tj[a] > Ti[a+1]) — LCP[j+1] =0

Felipe A. Louza (USP) Ext. Mem. Gen. Suffix an LCP Arrays Construction | (@Il =E 1N 5[el [(e e

23 /24

Phase 2: Merging
(iii) Inducing Suffixes

Prefix assembling must consider the induced suffixes

Let two consecutive suffixes on SA;, SA;[j] = a and SA;[j +1] = b

» If T;[a, n;] is induced

> Ti[a, ni] will be ignored in the heap comparisons (no assembling)
> Ti[b, nj] must start the assembling from the begining

SALJ] | LCP[j] | BWT; | PREL[]]
i oa 0 A GC
j+1 b 0 $ GT

S(C[T[#[#]#]

Solving:

suffix

GC ...
GTA...

» If a suffix will be induced (Tj[a] > Ti[a+1]) — LCP[j+1] =0
> This /cp value is always 1, otherwise it will also be induced

Felipe A. Louza (USP) Ext. Mem. Gen. Suffix an LCP Arrays Construction | (@Il =E 1N 5[el [(e e

23 /24

Conclusion

Our contribuition:

eGSA, the first external memory algorithm to construct both generalized suffix
and LCP arrays for sets of large strings

Felipe A. Louza (USP) | =Y BN BRI PEET N M SV EVER @ BT CPM 2013 Bad Herrenalb, Germany 24 /24

Conclusion

Our contribuition:

eGSA, the first external memory algorithm to construct both generalized suffix
and LCP arrays for sets of large strings

eGSA can be employed to construct:

1. GSAs and LCP arrays from SA and LCP arrays that have already been
computed individually for strings in a dataset

Felipe A. Louza (USP) SRS e NV el e s CPM 2013 Bad Herrenalb, Germany 24 /24

Conclusion

Our contribuition:

eGSA, the first external memory algorithm to construct both generalized suffix
and LCP arrays for sets of large strings

eGSA can be employed to construct:

1. GSAs and LCP arrays from SA and LCP arrays that have already been
computed individually for strings in a dataset

2. The core data structures used by LOF-SA search algorithms
[Sinha et al., 2008]

Felipe A. Louza (USP) Ext. Mem. Gen. Suffix an LCP Arrays Construction | (@Il =E 1N 5[el [(e e 24 /24

Conclusion

Our contribuition:

eGSA, the first external memory algorithm to construct both generalized suffix
and LCP arrays for sets of large strings

eGSA can be employed to construct:
1. GSAs and LCP arrays from SA and LCP arrays that have already been
computed individually for strings in a dataset

2. The core data structures used by LOF-SA search algorithms
[Sinha et al., 2008]

3. Generalized suffix trees in external memory [Barsky et al., 2008]

Felipe A. Louza (USP) =S E Re N Vel e s CPM 2013 Bad Herrenalb, Germany 24 /24

Conclusion

Our contribuition:

eGSA, the first external memory algorithm to construct both generalized suffix
and LCP arrays for sets of large strings

eGSA can be employed to construct:

1. GSAs and LCP arrays from SA and LCP arrays that have already been
computed individually for strings in a dataset

2. The core data structures used by LOF-SA search algorithms
[Sinha et al., 2008]

3. Generalized suffix trees in external memory [Barsky et al., 2008]

4. Longest Previous Factor array [Crochemore et al., 2013]

Felipe A. Louza (USP) =S E Re N Vel e s CPM 2013 Bad Herrenalb, Germany 24 /24

	Introduction
	eGSA
	Performance Evaluation
	Conclusions

